33 resultados para Marília residual plateau
Resumo:
Residual lung function abnormalities have been investigated in 9 children (4 boys and 5 girls) a mean 2.7 years after surviving severe adult respiratory distress syndrome (ARDS). All patients had been artificially ventilated for an average of 9.4 days with a FiO2 greater than 0.5 for 34 hours and maximal PEEP levels in the range of 8-20 cm H2O. Since the ARDS, 3 children had presented recurrent respiratory symptoms (moderate exertional dyspnea and cough) and 2 had had evidence of fibrosis on chest radiographs. In all patients abnormal lung functions were found, i.e. ventilation inequalities (8), hypoxemia (7), and obstructive (2) and restrictive (1) lung disease. A significant correlation between respirator therapy and residual lung function was found (duration of FiO2 greater than 0.5 in hours and inspiratory plateau pressure during respirator therapy vs. ventilation inequalities and hypoxemia).
Resumo:
Sections through an oceanic plateau are preserved in tectonic slices in the Western Cordillera of Ecuador (South America). The San Juan section is a sequence of mafic-ultramafic cumulates. To establish that these plutonic rocks formed in an oceanic plateau setting, we have developed criteria that discriminate intrusions of oceanic plateaus from those of other tectonic settings. The mineralogy and crystallization sequence of the cumulates are similar to those of intra-plate magmas. Clinopyroxene predominates throughout, and orthopyroxene is only a minor component. Rocks of intermediate composition are absent, and hornblende is restricted to the uppermost massive gabbros within the sequence. The ultramafic cumulates are very depleted in light rare-earth elements (LREE), whereas the gabbros have flat or slightly enriched LREE patterns. The composition of the basaltic liquid in equilibrium with the peridotite, calculated using olivine compositions and REE contents of clinopyroxene, contains between 16% and 8% MgO and has a flat REE pattern. This melt is geochemically similar to other accreted oceanic plateau basalts, isotropic gabbros, and differentiated sills in western Ecuador. The Ecuadorian intrusive and extrusive rocks have a narrow range of epsilonNd(i) (+8 to +5) and have a rather large range of Pb isotopic ratios. Pb isotope systematics of the San Juan plutonic rocks and mineral separates lie along a mixing line between the depleted mantle (DMM) and the enriched-plume end members. This suggests that the Ecuadorian plutonic rocks generated from the mixing of two mantle sources, a depleted mid-oceanic ridge basalt (MORB) source and an enriched one. The latter is characterized by high (Pb-207/Pb-204)(i) ratios and could reflect a contamination by recycled either lower continental crust or oceanic pelagic sediments and (or) altered oceanic crust (enriched mantle type I, EMI). These data suggest that the San Juan sequence represents the plutonic components of an Early Cretaceous oceanic plateau, which accreted in the Late Cretaceous to the Ecuadorian margin.
Resumo:
OBJECTIVES: Residual mitral regurgitation after valve repair worsens patients' clinical outcome. Postimplant adjustable mitral rings potentially address this issue, allowing the reshaping of the annulus on the beating heart under echocardiography control. We developed an original mitral ring allowing valve geometry remodelling after the implantation and designed an animal study to assess device effectiveness in correcting residual mitral regurgitation. METHODS: The device consists of two concentric rings: one internal and flexible, sutured to the mitral annulus and a second external and rigid. A third conic element slides between the two rings, modifying the shape of the flexible ring. This sliding element is remotely activated with a rotating tool. Animal model: in adult swine, under cardio pulmonary bypass and cardiac arrest, we shortened the primary chordae of P2 segment to reproduce Type III regurgitation and implanted the active ring. We used intracardiac ultrasound to assess mitral regurgitation and the efficacy of the active ring to correct it. RESULTS: Severe mitral regurgitation (3+ and 4+) was induced in eight animals, 54 ± 6 kg in weight. Vena contracta width decreased from 0.8 ± 0.2 to 0.1 cm; proximal isovelocity surface area radius decreased from 0.8 ± 0.2 to 0.1 cm and effective regurgitant orifice area decreased from 0.50 ± 0.1 to 0.1 ± 0.1 cm(2). Six animals had a reversal of systolic pulmonary flow that normalized following the activation of the device. All corrections were reversible. CONCLUSIONS: Postimplant adjustable mitral ring corrects severe mitral regurgitation through the reversible modification of the annulus geometry on the beating heart. It addresses the frequent and morbid issue of recurrent mitral valve regurgitation.
Resumo:
The eastern part of the Western Cordillera of Ecuador includes fragments of an Early Cretaceous ( approximate to 123 Ma) oceanic plateau accreted around 85-80 Ma (San Juan unit). West of this unit and in fault contact with it, another oceanic plateau sequence (Guaranda unit) is marked by the occurrence of picrites, ankaramites, basalts, dolerites and shallow level gabbros. A comparable unit is also exposed in northwestern coastal Ecuador (Pedernales unit). Picrites have LREE-depleted patterns, high epsilonNd(i) and very low Pb isotopic ratios, suggesting that they were derived from an extremely depleted source. In contrast, the ankaramites and Mg-rich basalts are LREE-enriched and have radiogenic Pb isotopic compositions similar to the Galapagos HIMU component; their epsilonNd(i) are slightly lower than those of the picrites. Basalts, dolerites and gabbros differ from the picrites and ankaramites by flat rare earth element (REE) patterns and lower epsilonNd; their Pb isotopic compositions are intermediate between those of the picrites and ankaramites. The ankaramites, Mg-rich basalts, and picrites differ from the lavas from the San Juan-Multitud Unit by higher Pb ratios and lower epsilonNd(i). The Ecuadorian and Gorgona 88-86 Ma picrites are geochemically similar. The Ecuadorian ankaramites and Mg-rich basalts share with the 92-86 Ma Mg-rich basalts of the Caribbean-Colombian Oceanic Plateau (CCOP) similar trace element and Nd and Pb isotopic chemistry. This suggests that the Pedernales and Guaranda units belong to the Late Cretaceous CCOR The geochemical diversity of the Guaranda and Pedernales rocks illustrates the heterogeneity of the CCOP plume source and suggests a multi-stage model for the emplacement of these rocks. Stratigraphic and geological relations strongly suggest that the Guaranda unit was accreted in the late Maastrichtian (approximate to 68-65 Ma). (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Four distinct rock units have been recognized near El Aguacate, in the Janico-Juncalito-La Vega area of the Duarte complex (Dominican Republic): (1) serpentinites crosscut by numerous diabasic dikes, (2) basalts interbedded with Late Jurassic ribbon cherts, (3) picrites and ankaramites relatively enriched in incompatible trace elements, and (4) amphibolites and gneissic amphibolites chemically similar to Oceanic Plateau Basalts. Similar Ar-Ar ages of late magmatic amphibole from a picrite, and hornblende from an amphibolite (86.1 +/- 1.3 Ma and 86.7 +/- 1.6 Ma, respectively), suggest that the Duarte picrites are contemporaneous with the Deep Sea Drilling Program Leg 15 and Ocean Drilling Program Leg 126 basalts drilled from the Caribbean oceanic plateau. These basalts are associated with sediments containing Late Cretaceous faunas. Sr, Nd, and Pb data show that enriched picrites and amphibolites are isotopically similar to mafic lavas from previously described Caribbean plateau and Galapagos hotspot basalts. Major element, trace element, and lead isotopic features of Late Jurassic basalts and diabases are consistent with those of normal oceanic crust basalt. However, these basalts differ from typical N-MORB because they have lower epsilon Nd ratios that plot within the range of Ocean Island Basalts. These rocks appear to represent remnants of the Caribbean Jurassic oceanic crust formed from an oceanic ridge possibly close to a hotspot. Later, they were tectonically juxtaposed with Late Cretaceous slices of the Caribbean-Colombian plateau.
Resumo:
Clinical use of the Stejskal-Tanner diffusion weighted images is hampered by the geometric distortions that result from the large residual 3-D eddy current field induced. In this work, we aimed to predict, using linear response theory, the residual 3-D eddy current field required for geometric distortion correction based on phantom eddy current field measurements. The predicted 3-D eddy current field induced by the diffusion-weighting gradients was able to reduce the root mean square error of the residual eddy current field to ~1 Hz. The model's performance was tested on diffusion weighted images of four normal volunteers, following distortion correction, the quality of the Stejskal-Tanner diffusion-weighted images was found to have comparable quality to image registration based corrections (FSL) at low b-values. Unlike registration techniques the correction was not hindered by low SNR at high b-values, and results in improved image quality relative to FSL. Characterization of the 3-D eddy current field with linear response theory enables the prediction of the 3-D eddy current field required to correct eddy current induced geometric distortions for a wide range of clinical and high b-value protocols.
Resumo:
Graft-versus-host disease (GVHD) is the main complication after allogeneic bone marrow transplantation. Although the tissue damage and subsequent patient mortality are clearly dependent on T lymphocytes present in the grafted inoculum, the lethal effector molecules are unknown. Here, we show that acute lethal GVHD, induced by the transfer of splenocytes from C57BL/6 mice into sensitive BALB/c recipients, is dependent on both perforin and Fas ligand (FasL)-mediated lytic pathways. When spleen cells from mutant mice lacking both effector molecules were transferred to sublethally irradiated allogeneic recipients, mice survived. Delayed mortality was observed with grafted cells deficient in only one lytic mediator. In contrast, protection from lethal acute GVHD in resistant mice was exclusively perforin dependent. Perforin-FasL-deficient T cells failed to lyse most target cells in vitro. However, they still efficiently killed tumor necrosis factor alpha-sensitive fibroblasts, demonstrating that cytotoxic T cells possess a third lytic pathway.
Resumo:
Foreland sedimentary rocks from the northern Fars region of Iran contain a record of deformation associated with the Cenozoic collision between Arabia and Eurasia that resulted in formation of the Zagros orogen. The timing of the deformation associated with this event is poorly known. To address this we conducted a study of Miocene foreland sedimentary rocks (19.7-14.8 Ma) of the Chahar-Makan syncline using clast composition, clay mineralogy and low-temperature fission-track dating. The results showed that most of the sedimentary rocks were sourced from ophiolitic rocks. Detrital apatite fission-track (AFT) age signatures of Miocene sedimentary rocks record exhumation in the hanging wall of the Main Zagros Thrust and confirm that the change from underthrusting of the stretched Arabian margin to widespread crustal thickening and deformation in the Zagros region is no younger than 19.7 Ma. A transition from Late Oligocene to Mesozoic-Eocene AFT detrital age signatures between 19.7-16.6 Ma and 16.6-13.8 Ma is interpreted to reflect a possible rearrangement of palaeodrainage distribution that resulted from folding and expansion-uplift of the Zagros-Iranian Plateau region.
Resumo:
This paper deals with the problem of spatial data mapping. A new method based on wavelet interpolation and geostatistical prediction (kriging) is proposed. The method - wavelet analysis residual kriging (WARK) - is developed in order to assess the problems rising for highly variable data in presence of spatial trends. In these cases stationary prediction models have very limited application. Wavelet analysis is used to model large-scale structures and kriging of the remaining residuals focuses on small-scale peculiarities. WARK is able to model spatial pattern which features multiscale structure. In the present work WARK is applied to the rainfall data and the results of validation are compared with the ones obtained from neural network residual kriging (NNRK). NNRK is also a residual-based method, which uses artificial neural network to model large-scale non-linear trends. The comparison of the results demonstrates the high quality performance of WARK in predicting hot spots, reproducing global statistical characteristics of the distribution and spatial correlation structure.
Resumo:
The aim of this study was to compare the diagnostic efficiency of plain film and spiral CT examinations with 3D reconstructions of 42 tibial plateau fractures and to assess the accuracy of these two techniques in the pre-operative surgical plan in 22 cases. Forty-two tibial plateau fractures were examined with plain film (anteroposterior, lateral, two obliques) and spiral CT with surface-shaded-display 3D reconstructions. The Swiss AO-ASIF classification system of bone fracture from Muller was used. In 22 cases the surgical plans and the sequence of reconstruction of the fragments were prospectively determined with both techniques, successively, and then correlated with the surgical reports and post-operative plain film. The fractures were underestimated with plain film in 18 of 42 cases (43%). Due to the spiral CT 3D reconstructions, and precise pre-operative information, the surgical plans based on plain film were modified and adjusted in 13 cases among 22 (59%). Spiral CT 3D reconstructions give a better and more accurate demonstration of the tibial plateau fracture and allows a more precise pre-operative surgical plan.
Resumo:
Repeated antimalarial treatment for febrile episodes and self-treatment are common in malaria-endemic areas. The intake of antimalarials prior to participating in an in vivo study may alter treatment outcome and affect the interpretation of both efficacy and safety outcomes. We report the findings from baseline plasma sampling of malaria patients prior to inclusion into an in vivo study in Tanzania and discuss the implications of residual concentrations of antimalarials in this setting. In an in vivo study conducted in a rural area of Tanzania in 2008, baseline plasma samples from patients reporting no antimalarial intake within the last 28 days were screened for the presence of 14 antimalarials (parent drugs or metabolites) using liquid chromatography-tandem mass spectrometry. Among the 148 patients enrolled, 110 (74.3%) had at least one antimalarial in their plasma: 80 (54.1%) had lumefantrine above the lower limit of calibration (LLC = 4 ng/mL), 7 (4.7%) desbutyl-lumefantrine (4 ng/mL), 77 (52.0%) sulfadoxine (0.5 ng/mL), 15 (10.1%) pyrimethamine (0.5 ng/mL), 16 (10.8%) quinine (2.5 ng/mL) and none chloroquine (2.5 ng/mL). The proportion of patients with detectable antimalarial drug levels prior to enrollment into the study is worrying. Indeed artemether-lumefantrine was supposed to be available only at government health facilities. Although sulfadoxine-pyrimethamine is only recommended for intermittent preventive treatment in pregnancy (IPTp), it was still widely used in public and private health facilities and sold in drug shops. Self-reporting of previous drug intake is unreliable and thus screening for the presence of antimalarial drug levels should be considered in future in vivo studies to allow for accurate assessment of treatment outcome. Furthermore, persisting sub-therapeutic drug levels of antimalarials in a population could promote the spread of drug resistance. The knowledge on drug pressure in a given population is important to monitor standard treatment policy implementation.
Resumo:
OBJECT: To study a scan protocol for coronary magnetic resonance angiography based on multiple breath-holds featuring 1D motion compensation and to compare the resulting image quality to a navigator-gated free-breathing acquisition. Image reconstruction was performed using L1 regularized iterative SENSE. MATERIALS AND METHODS: The effects of respiratory motion on the Cartesian sampling scheme were minimized by performing data acquisition in multiple breath-holds. During the scan, repetitive readouts through a k-space center were used to detect and correct the respiratory displacement of the heart by exploiting the self-navigation principle in image reconstruction. In vivo experiments were performed in nine healthy volunteers and the resulting image quality was compared to a navigator-gated reference in terms of vessel length and sharpness. RESULTS: Acquisition in breath-hold is an effective method to reduce the scan time by more than 30 % compared to the navigator-gated reference. Although an equivalent mean image quality with respect to the reference was achieved with the proposed method, the 1D motion compensation did not work equally well in all cases. CONCLUSION: In general, the image quality scaled with the robustness of the motion compensation. Nevertheless, the featured setup provides a positive basis for future extension with more advanced motion compensation methods.