16 resultados para IN VIVO
Resumo:
This letter describes a data telemetry biomedical experiment. An implant, consisting of a biometric data sensor, electronics, an antenna, and a biocompatible capsule, is described. All the elements were co-designed in order to maximize the transmission distance. The device was implanted in a pig for an in vivo experiment of temperature monitoring.
Resumo:
The mouse has emerged as an animal model for many diseases. At IRO, we have used this animal to understand the development of many eye diseases and treatment of some of them. Precise evaluation of vision is a prerequisite for both these approaches. In this unit we describe three ways to measure vision: testing the optokinetic response, and evaluating the fundus by direct observation and by fluorescent angiography.
In vivo and in vitro effects of somatostatin and insulin on glucagon release in a human glucagonoma.
Resumo:
Inhibition of pancreatic glucagon secretion has been reported to be mediated by glucose, insulin and somatostatin. As no human pancreatic alpha-cell lines are available to study in vitro the relative importance of insulin and glucose in the control of pancreatic glucagon release, we investigated a patient presenting with a malignant glucagonoma who underwent surgical resection of the tumour. Functional somatostatin receptors were present as octreotide administration decreased basal glucagon and insulin secretion by 52 and 74%, respectively. The removed tumour was immunohistochemically positive for glucagon, chromogranin A and pancreatic polypeptide but negative for insulin, gastrin and somatostatin. The glucagonoma cells were also isolated and cultured in vitro. Incubation experiments revealed that change from high (10 mM) to low (1 mM) glucose concentration was unable to stimulate glucagon secretion. A dose-dependent inhibition of glucagon release by insulin was however, observed at low glucose concentration. These findings demonstrate that insulin could inhibit glucagon secretion in vitro in the absence of elevated glucose concentrations. These data suggest, as observed in vivo and in vitro in several animal studies, that glucopenia-induced glucagon secretion in humans is not mediated by a direct effect of low glucose on alpha-cells but possibly by a reduction of insulin-mediated alpha-cell suppression and/or an indirect neuronal stimulation of glucagon release.
Resumo:
OBJECTIVE: We examined the correlation between clinical wear rates of restorative materials and enamel (TRAC Research Foundation, Provo, USA) and the results of six laboratory test methods (ACTA, Alabama (generalized, localized), Ivoclar (vertical, volumetric), Munich, OHSU (abrasion, attrition), Zurich). METHODS: Individual clinical wear data were available from clinical trials that were conducted by TRAC Research Foundation (formerly CRA) together with general practitioners. For each of the n=28 materials (21 composite resins for intra-coronal restorations [20 direct and 1 indirect], 5 resin materials for crowns, 1 amalgam, enamel) a minimum of 30 restorations had been placed in posterior teeth, mainly molars. The recall intervals were up to 5 years with the majority of materials (n=27) being monitored, however, only for up to 2 years. For the laboratory data, the databases MEDLINE and IADR abstracts were searched for wear data on materials which were also clinically tested by TRAC Research Foundation. Only those data for which the same test parameters (e.g. number of cycles, loading force, type of antagonist) had been published were included in the study. A different quantity of data was available for each laboratory method: Ivoclar (n=22), Zurich (n=20), Alabama (n=17), OHSU and ACTA (n=12), Munich (n=7). The clinical results were summed up in an index and a linear mixed model was fitted to the log wear measurements including the following factors: material, time (0.5, 1, 2 and 3 years), tooth (premolar/molar) and gender (male/female) as fixed effects, and patient as random effect. Relative ranks were created for each material and method; the same was performed with the clinical results. RESULTS: The mean age of the subjects was 40 (±12) years. The materials had been mostly applied in molars (81%) and 95% of the intracoronal restorations were Class II restorations. The mean number of individual wear data per material was 25 (range 14-42). The mean coefficient of variation of clinical wear data was 53%. The only significant correlation was reached by OHSU (abrasion) with a Spearman r of 0.86 (p=0.001). Zurich, ACTA, Alabama generalized wear and Ivoclar (volume) had correlation coefficients between 0.3 and 0.4. For Zurich, Alabama generalized wear and Munich, the correlation coefficient improved if only composites for direct use were taken into consideration. The combination of different laboratory methods did not significantly improve the correlation. SIGNIFICANCE: The clinical wear of composite resins is mainly dependent on differences between patients and less on the differences between materials. Laboratory methods to test conventional resins for wear are therefore less important, especially since most of them do not reflect the clinical wear.
Resumo:
The antiviral potency of the cytokine IFN-α has been long appreciated but remains poorly understood. A number of studies have suggested that induction of the apolipoprotein B mRNA editing enzyme, catalytic polypeptide 3 (APOBEC3) and bone marrow stromal cell antigen 2 (BST-2/tetherin/CD317) retroviral restriction factors underlies the IFN-α-mediated suppression of HIV-1 replication in vitro. We sought to characterize the as-yet-undefined relationship between IFN-α treatment, retroviral restriction factors, and HIV-1 in vivo. APOBEC3G, APOBEC3F, and BST-2 expression levels were measured in HIV/hepatitis C virus (HCV)-coinfected, antiretroviral therapy-naïve individuals before, during, and after pegylated IFN-α/ribavirin (IFN-α/riba) combination therapy. IFN-α/riba therapy decreased HIV-1 viral load by -0.921 (±0.858) log(10) copies/mL in HIV/HCV-coinfected patients. APOBEC3G/3F and BST-2 mRNA expression was significantly elevated during IFN-α/riba treatment in patient-derived CD4+ T cells (P < 0.04 and P < 0.008, paired Wilcoxon), and extent of BST-2 induction was correlated with reduction in HIV-1 viral load during treatment (P < 0.05, Pearson's r). APOBEC3 induction during treatment was correlated with degree of viral hypermutation (P < 0.03, Spearman's ρ), and evolution of the HIV-1 accessory protein viral protein U (Vpu) during IFN-α/riba treatment was suggestive of increased BST-2-mediated selection pressure. These data suggest that host restriction factors play a critical role in the antiretroviral capacity of IFN-α in vivo, and warrant investigation into therapeutic strategies that specifically enhance the expression of these intrinsic immune factors in HIV-1-infected individuals.
Resumo:
The mechanisms by which CD4(+)CD25(+)Foxp3(+) T (Treg) cells regulate effector T cells in a transplantation setting and their in vivo homeostasis still remain to be clarified. Using a mouse adoptive transfer model, we analyzed the in vivo expansion, trafficking, and effector function of alloreactive T cells and donor-specific Treg cells, in response to a full-thickness skin allograft. Fluorescent-labeled CD4(+)CD25(-) and antigen-specific Treg cells were transferred alone or co-injected into syngeneic BALB/c-Nude recipients transplanted with skins from (C57BL/6 x BALB/c) F1 donors. Treg cells divided in vivo, migrated and accumulated in the allograft draining lymph nodes as well as within the graft. The co-transfer of Treg cells did not modify the early activation and homing of CD4(+)CD25(-) T cells in secondary lymphoid organs. However, in the presence of Treg cells, alloreactive CD4(+)CD25(-) T cells produced significantly less IFN-gamma and were present in reduced numbers in the secondary lymphoid organs. Furthermore, time-course studies showed that Treg cells were recruited into the allograft at a very early stage after transplantation and effectively prevented the infiltration of effector T cells. In conclusion, suppression of rejection requires the early recruitment to the site of antigenic challenge of donor-specific Treg cells, which then mainly regulate the effector arm of T cell alloresponses.
Resumo:
Cerebral metabolism is compartmentalized between neurons and glia. Although glial glycolysis is thought to largely sustain the energetic requirements of neurotransmission while oxidative metabolism takes place mainly in neurons, this hypothesis is matter of debate. The compartmentalization of cerebral metabolic fluxes can be determined by (13)C nuclear magnetic resonance (NMR) spectroscopy upon infusion of (13)C-enriched compounds, especially glucose. Rats under light α-chloralose anesthesia were infused with [1,6-(13)C]glucose and (13)C enrichment in the brain metabolites was measured by (13)C NMR spectroscopy with high sensitivity and spectral resolution at 14.1 T. This allowed determining (13)C enrichment curves of amino acid carbons with high reproducibility and to reliably estimate cerebral metabolic fluxes (mean error of 8%). We further found that TCA cycle intermediates are not required for flux determination in mathematical models of brain metabolism. Neuronal tricarboxylic acid cycle rate (V(TCA)) and neurotransmission rate (V(NT)) were 0.45 ± 0.01 and 0.11 ± 0.01 μmol/g/min, respectively. Glial V(TCA) was found to be 38 ± 3% of total cerebral oxidative metabolism, accounting for more than half of neuronal oxidative metabolism. Furthermore, glial anaplerotic pyruvate carboxylation rate (V(PC)) was 0.069 ± 0.004 μmol/g/min, i.e., 25 ± 1% of the glial TCA cycle rate. These results support a role of glial cells as active partners of neurons during synaptic transmission beyond glycolytic metabolism.
Resumo:
CYP3A4, CYP3A5 and CYP3A7 are hepatic enzymes that metabolize about 50% of drugs on the market, with a large overlap in their specificities. We investigated the genetic bases that contribute to the variation of CYP3A activity. We phenotyped 251 individuals from two independent studies (182 patients treated with methadone and 69 patients with clozapine) for CYP3A activity using the midazolam phenotyping test and genotyped them for CYP3A4, CYP3A5, and CYP3A7 genetic variants, including the single nucleotide polymorphism (SNP) rs4646437C>T in intron 7 of CYP3A4. Owing to the fact that CYP enzymes require electron transfer through the P450 oxidoreductase (POR), and functional impairment has been shown for the POR*28 SNP, this polymorphism was also analysed. We show that CYP3A4, CYP3A5 and CYP3A7 genotypes, including the SNP rs4646437C>T, do not reflect the inter-individual variability of CYP3A activity (P>0.1). In contrast, POR*28 TT genotype presents a 1.6-fold increase in CYP3A activity compared with POR*28C carriers (n = 182, P = 0.004). This finding was replicated in the second independent dataset (n = 69, P = 0.04). The SNP POR*28 seems to be a better genetic marker of the variability of total CYP3A activity in vivo than CYP3A4, CYP3A5 and CYP3A7 genetic variants.
Resumo:
Brain-derived neurotrophic factor (BDNF) promotes synaptic plasticity via an enhancement in expression of specific synaptic proteins. Recent results suggest that the neuronal monocarboxylate transporter MCT2 is a postsynaptic protein critically involved in synaptic plasticity and long-term memory. To investigate in vivo whether BDNF can modulate the expression of MCT2 as well as other proteins involved in synaptic plasticity, acute injection of BDNF was performed in mouse dorsal hippocampal CA1 area. Using immunohistochemistry, it was found that MCT2 expression was enhanced in part of the CA1 area and in the dentate gyrus 6 h after a single intrahippocampal injection of BDNF. Similarly, expression of the immediate early genes Arc and Zif268 was enhanced in the same hippocampal areas, in accordance with their role in synaptic plasticity. Immunoblot analysis confirmed the significant enhancement in MCT2 protein expression. In contrast, no changes were observed for the glial monocarboxylate transporters MCT1 and MCT4. When other synaptic proteins were investigated, it was found that postsynaptic density 95 (PSD95) and glutamate receptor 2 (GluR2) protein levels were significantly enhanced while no effect could be detected for synaptophysin, synaptosomal-associated protein 25 (SNAP25), αCaMKII and GluR1. These results demonstrate that MCT2 expression can be upregulated together with other key postsynaptic proteins in vivo under conditions related to synaptic plasticity, further suggesting the importance of energetics for memory formation.
Resumo:
Life on earth is subject to the repeated change between day and night periods. All organisms that undergo these alterations have to anticipate consequently the adaptation of their physiology and possess an endogenous periodicity of about 24 hours called circadian rhythm from the Latin circa (about) and diem (day). At the molecular level, virtually all cells of an organism possess a molecular clock which drives rhythmic gene expression and output functions. Besides altered rhythmicity in constant conditions, impaired clock function causes pathophysiological conditions such as diabetes or hypertension. These data unveil a part of the mechanisms underlying the well-described epidemiology of shift work and highlight the function of clock-driven regulatory mechanisms. The post-translational modification of proteins by the ubiquitin polypeptide is a central mechanism to regulate their stability and activity and is capital for clock function. Similarly to the majority of biological processes, it is reversible. Deubiquitylation is carried out by a wide variety of about ninety deubiquitylating enzymes and their function remains poorly understood, especially in vivo. This class of proteolytic enzymes is parted into five families including the Ubiquitin-Specific Proteases (USP), which is the most important with about sixty members. Among them, the Ubiquitin-Specific Protease 2 (Usp2) gene encodes two protein isoforms, USP2-45 and USP2-69. The first is ubiquitously expressed under the control of the circadian clock and displays all features of core clock genes or its closest outputs effectors. Additionally, Usp2-45 was also found to be induced by the mineralocorticoid hormone aldosterone and thought to participate in Na+ reabsorption and blood pressure regulation by Epithelial Na+ Channel ENaC in the kidneys. During my thesis, I aimed to characterize the role of Usp2 in vivo with respect to these two areas, by taking advantage of a total constitutive knockout mouse model. In the first project I aimed to validate the role of USP2-45 in Na+ homeostasis and blood pressure regulation by the kidneys. I found no significant alterations of diurnal Na+ homeostasis and blood pressure in these mice, indicating that Usp2 does not play a substantial role in this process. In urine analyses, we found that our Usp2-KO mice are actually hypercalciuric. In a second project, I aimed to understand the causes of this phenotype. I found that the observed hypercalciuria results essentially from intestinal hyperabsorption. These data reveal a new role for Usp2 as an output effector of the circadian clock in dietary Ca2+ metabolism in the intestine.
Resumo:
PURPOSE: Milk fat globule-epidermal growth factor-factor VIII (MFGE8) is necessary for diurnal outer segment phagocytosis and promotes VEGF-dependent neovascularization. The prevalence of two single nucleotide polymorphisms (SNP) in MFGE8 was studied in two exsudative or "wet" Age-related Macular Degeneration (AMD) groups and two corresponding control groups. We studied the effect of MFGE8 deficiency on retinal homeostasis with age and on choroidal neovascularization (CNV) in mice. METHODS: The distribution of the SNP (rs4945 and rs1878326) of MFGE8 was analyzed in two groups of patients with "wet" AMD and their age-matched controls from Germany and France. MFGE8-expressing cells were identified in Mfge8(+/-) mice expressing ß-galactosidase. Aged Mfge8(+/-) and Mfge8(-/-) mice were studied by funduscopy, histology, electron microscopy, scanning electron microscopy of vascular corrosion casts of the choroid, and after laser-induced CNV. RESULTS: rs1878326 was associated with AMD in the French and German group. The Mfge8 promoter is highly active in photoreceptors but not in retinal pigment epithelium cells. Mfge8(-/-) mice did not differ from controls in terms of fundus appearance, photoreceptor cell layers, choroidal architecture or laser-induced CNV. In contrast, the Bruch's membrane (BM) was slightly but significantly thicker in Mfge8(-/-) mice as compared to controls. CONCLUSIONS: Despite a reproducible minor increase of rs1878326 in AMD patients and a very modest increase in BM in Mfge8(-/-) mice, our data suggests that MFGE8 dysfunction does not play a critical role in the pathogenesis of AMD.
Resumo:
PURPOSE: We report on the in vivo testing of a novel noninvasively adjustable glaucoma drainage device (AGDD), which features an adjustable outflow resistance, and assess the safety and efficiency of this implant. METHODS: Under general anesthesia, the AGDD was implanted on seven white New Zealand rabbits for a duration of 4 months under a scleral flap in a way analogous to the Ex-PRESS device and set in an operationally closed position. The IOP was measured on a regular basis on the operated and control eyes using a rebound tonometer. Once a month the AGDD was adjusted noninvasively from its fully closed to its fully open position and the resulting pressure drop was measured. The contralateral eye was not operated and served as control. After euthanization, the eyes were collected for histology evaluation. RESULTS: The mean preoperative IOP was 11.1 ± 2.4 mm Hg. The IOP was significantly lower for the operated eye (6.8 ± 2 mm Hg) compared to the nonoperated eye (13.1 ± 1.6 mm Hg) during the first 8 days after surgery. When opening the AGDD from its fully closed to fully open position, the IOP dropped significantly from 11.2 ± 2.9 to 4.8 ± 0.9 mm Hg (P < 0.05). CONCLUSIONS: Implanting the AGDD is a safe and uncomplicated surgical procedure. The fluidic resistance was noninvasively adjustable during the postoperative period with the AGDD between its fully closed and fully open positions.
Resumo:
INTRODUCTION: Gamma Knife surgery (GKS) is a non-invasive neurosurgical stereotactic procedure, increasingly used as an alternative to open functional procedures. This includes targeting of the ventro-intermediate nucleus of the thalamus (e.g. Vim) for tremor. We currently perform an indirect targeting, as the Vim is not visible on current 3Tesla MRI acquisitions. Our objective was to enhance anatomic imaging (aiming at refining the precision of anatomic target selection by direct visualisation) in patients treated for tremor with Vim GKS, by using high field 7T MRI. MATERIALS AND METHODSH: Five young healthy subjects were scanned on 3 (T1-w and diffusion tensor imaging) and 7T (high-resolution susceptibility weighted images (SWI)) MRI in Lausanne. All images were further integrated for the first time into the Gamma Plan Software(®) (Elekta Instruments, AB, Sweden) and co-registered (with T1 was a reference). A simulation of targeting of the Vim was done using various methods on the 3T images. Furthermore, a correlation with the position of the found target with the 7T SWI was performed. The atlas of Morel et al. (Zurich, CH) was used to confirm the findings on a detailed analysis inside/outside the Gamma Plan. RESULTS: The use of SWI provided us with a superior resolution and an improved image contrast within the basal ganglia. This allowed visualization and direct delineation of some subgroups of thalamic nuclei in vivo, including the Vim. The position of the target, as assessed on 3T, perfectly matched with the supposed one of the Vim on the SWI. Furthermore, a 3-dimensional model of the Vim-target area was created on the basis of the obtained images. CONCLUSION: This is the first report of the integration of SWI high field MRI into the LGP, aiming at the improvement of targeting validation of the Vim in tremor. The anatomical correlation between the direct visualization on 7T and the current targeting methods on 3T (e.g. quadrilatere of Guyot, histological atlases) seems to show a very good anatomical matching. Further studies are needed to validate this technique, both by improving the accuracy of the targeting of the Vim (potentially also other thalamic nuclei) and to perform clinical assessment.
Resumo:
BACKGROUND: Acetate metabolism in skeletal muscle is regulated by acetylCoA synthetase (ACS). The main function of ACS is to provide cells with acetylCoA, a key molecule for numerous metabolic pathways including fatty acid and cholesterol synthesis and the Krebs cycle. METHODS: Hyperpolarized [1-(13)C]acetate prepared via dissolution dynamic nuclear polarization was injected intravenously at different concentrations into rats. The (13)C magnetic resonance signals of [1-(13)C]acetate and [1-(13)C]acetylcarnitine were recorded in vivo for 1min. The kinetic rate constants related to the transformation of acetate into acetylcarnitine were deduced from the 3s time resolution measurements using two approaches, either mathematical modeling or relative metabolite ratios. RESULTS: Although separated by two biochemical transformations, a kinetic analysis of the (13)C label flow from [1-(13)C]acetate to [1-(13)C]acetylcarnitine led to a unique determination of the activity of ACS. The in vivo Michaelis constants for ACS were KM=0.35±0.13mM and Vmax=0.199±0.031μmol/g/min. CONCLUSIONS: The conversion rates from hyperpolarized acetate into acetylcarnitine were quantified in vivo and, although separated by two enzymatic reactions, these rates uniquely defined the activity of ACS. The conversion rates associated with ACS were obtained using two analytical approaches, both methods yielding similar results. GENERAL SIGNIFICANCE: This study demonstrates the feasibility of directly measuring ACS activity in vivo and, since the activity of ACS can be affected by various pathological states such as cancer or diabetes, the proposed method could be used to non-invasively probe metabolic signatures of ACS in diseased tissue.