149 resultados para Hepatic fibrosis
Resumo:
Poly (ADP-ribose) polymerase 1 (PARP-1) is a constitutive enzyme, the major isoform of the PARP family, which is involved in the regulation of DNA repair, cell death, metabolism, and inflammatory responses. Pharmacological inhibitors of PARP provide significant therapeutic benefits in various preclinical disease models associated with tissue injury and inflammation. However, our understanding the role of PARP activation in the pathophysiology of liver inflammation and fibrosis is limited. In this study we investigated the role of PARP-1 in liver inflammation and fibrosis using acute and chronic models of carbon tetrachloride (CCl4 )-induced liver injury and fibrosis, a model of bile duct ligation (BDL)-induced hepatic fibrosis in vivo, and isolated liver-derived cells ex vivo. Pharmacological inhibition of PARP with structurally distinct inhibitors or genetic deletion of PARP-1 markedly attenuated CCl4 -induced hepatocyte death, inflammation, and fibrosis. Interestingly, the chronic CCl4 -induced liver injury was also characterized by mitochondrial dysfunction and dysregulation of numerous genes involved in metabolism. Most of these pathological changes were attenuated by PARP inhibitors. PARP inhibition not only prevented CCl4 -induced chronic liver inflammation and fibrosis, but was also able to reverse these pathological processes. PARP inhibitors also attenuated the development of BDL-induced hepatic fibrosis in mice. In liver biopsies of subjects with alcoholic or hepatitis B-induced cirrhosis, increased nitrative stress and PARP activation was noted. CONCLUSION: The reactive oxygen/nitrogen species-PARP pathway plays a pathogenetic role in the development of liver inflammation, metabolism, and fibrosis. PARP inhibitors are currently in clinical trials for oncological indications, and the current results indicate that liver inflammation and liver fibrosis may be additional clinical indications where PARP inhibition may be of translational potential.
Resumo:
Adiponectin, which plays a pivotal role in metabolic liver diseases, is reduced in concentration in patients with NASH (non-alcoholic steatohepatitis). The aim of the present study was to determine adiponectin concentrations in patients with different forms and stages of chronic liver diseases. Serum adiponectin concentrations were measured in 232 fasting patients with chronic liver disease: 64 with NAFLD (non-alcoholic fatty liver disease), 123 with other chronic liver disease (e.g. viral hepatitis, n=71; autoimmune disease, n=18; alcohol-induced liver disease, n=3; or elevated liver enzymes of unknown origin, n=31) and 45 with cirrhosis. Circulating adiponectin levels were significantly lower in patients with NAFLD in comparison with patients with other chronic liver disease (4.8+/-3.5 compared with 10.4+/-6.3 microg/ml respectively; P<0.0001). Circulating adiponectin levels were significantly higher in patients with cirrhosis in comparison with patients without cirrhosis (18.6+/-14.5 compared with 8.4+/-6.1 microg/ml respectively; P<0.0001). Adiponectin concentrations correlated negatively with body weight (P<0.001), serum triacylglycerols (triglycerides) (P<0.001) and, in women, with BMI (body mass index) (P<0.001). Adiponectin concentrations correlated positively with serum bile acids (P<0.001), serum hyaluronic acid (P<0.001) and elastography values (P<0.001). Adiponectin levels were decreased in patients with NAFLD. In conclusion, adiponectin levels correlate positively with surrogate markers of hepatic fibrosis (transient elastography, fasting serum bile acids and hyaluronate) and are significantly elevated in cases of cirrhosis.
Resumo:
Single-nucleotide polymorphisms within major histocompatibility class II (MHC II) genes have been associated with an increased risk of drug-induced liver injury. However, it has never been addressed whether the MHC II pathway plays an important role in the development of nonalcoholic fatty liver disease, the most common form of liver disease. We used a mouse model that has a complete knockdown of genes in the MHC II pathway (MHCII(Δ/Δ)). Firstly we studied the effect of high-fat diet-induced hepatic inflammation in these mice. Secondly we studied the development of carbon-tetra-chloride- (CCl4-) induced hepatic cirrhosis. After the high-fat diet, both groups developed obesity and hepatic steatosis with a similar degree of hepatic inflammation, suggesting no impact of the knockdown of MHC II on high-fat diet-induced inflammation in mice. In the second study, we confirmed that the CCl4 injection significantly upregulated the MHC II genes in wild-type mice. The CCl4 treatment significantly induced genes related to the fibrosis formation in wild-type mice, whereas this was lower in MHCII(Δ/Δ) mice. The liver histology, however, showed no detectable difference between groups, suggesting that the MHC II pathway is not required for the development of hepatic fibrosis induced by CCl4.
Resumo:
Fructose is mainly consumed with added sugars (sucrose and high fructose corn syrup), and represents up to 10% of total energy intake in the US and in several European countries. This hexose is essentially metabolized in splanchnic tissues, where it is converted into glucose, glycogen, lactate, and, to a minor extent, fatty acids. In animal models, high fructose diets cause the development of obesity, insulin resistance, diabetes mellitus, and dyslipidemia. Ectopic lipid deposition in the liver is an early occurrence upon fructose exposure, and is tightly linked to hepatic insulin resistance. In humans, there is strong evidence, based on several intervention trials, that fructose overfeeding increases fasting and postprandial plasma triglyceride concentrations, which are related to stimulation of hepatic de novo lipogenesis and VLDL-TG secretion, together with decreased VLDL-TG clearance. However, in contrast to animal models, fructose intakes as high as 200 g/day in humans only modestly decreases hepatic insulin sensitivity, and has no effect on no whole body (muscle) insulin sensitivity. A possible explanation may be that insulin resistance and dysglycemia develop mostly in presence of sustained fructose exposures associated with changes in body composition. Such effects are observed with high daily fructose intakes, and there is no solid evidence that fructose, when consumed in moderate amounts, has deleterious effects. There is only limited information regarding the effects of fructose on intrahepatic lipid concentrations. In animal models, high fructose diets clearly stimulate hepatic de novo lipogenesis and cause hepatic steatosis. In addition, some observations suggest that fructose may trigger hepatic inflammation and stimulate the development of hepatic fibrosis. This raises the possibility that fructose may promote the progression of non-alcoholic fatty liver disease to its more severe forms, i.e. non-alcoholic steatohepatitis and cirrhosis. In humans, a short-term fructose overfeeding stimulates de novo lipogenesis and significantly increases intrahepatic fat concentration, without however reaching the proportion encountered in non-alcoholic fatty liver diseases. Whether consumption of lower amounts of fructose over prolonged periods may contribute to the pathogenesis of NAFLD has not been convincingly documented in epidemiological studies and remains to be further assessed.
Resumo:
ABSTRACT: BACKGROUND: After liver injury, the repair process comprises activation and proliferation of hepatic stellate cells (HSCs), which produce extracellular matrix (ECM) proteins. Peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) is highly expressed in these cells, but its function in liver repair remains incompletely understood. This study investigated whether activation of PPARβ/δ with the ligand GW501516 influenced the fibrotic response to injury from chronic carbon tetrachloride (CCl4) treatment in mice. Wild type and PPARβ/δ-null mice were treated with CCl4 alone or CCl4 co-administered with GW501516. To unveil mechanisms underlying the PPARβ/δ-dependent effects, we analyzed the proliferative response of human LX-2 HSCs to GW501516 in the presence or absence of PPARβ/δ. RESULTS: We found that GW501516 treatment enhanced the fibrotic response. Compared to the other experimental groups, CCl4/GW501516-treated wild type mice exhibited increased expression of various profibrotic and pro-inflammatory genes, such as those involved in extracellular matrix deposition and macrophage recruitment. Importantly, compared to healthy liver, hepatic fibrotic tissues from alcoholic patients showed increased expression of several PPAR target genes, including phosphoinositide-dependent kinase-1, transforming growth factor beta-1, and monocyte chemoattractant protein-1. GW501516 stimulated HSC proliferation that caused enhanced fibrotic and inflammatory responses, by increasing the phosphorylation of p38 and c-Jun N-terminal kinases through the phosphoinositide-3 kinase/protein kinase-C alpha/beta mixed lineage kinase-3 pathway. CONCLUSIONS: This study clarified the mechanism underlying GW501516-dependent promotion of hepatic repair by stimulating proliferation of HSCs via the p38 and JNK MAPK pathways.
Resumo:
PURPOSE: To compare qualitative and quantitative magnetic resonance (MR) imaging characteristics of hepatic hemangiomas in patients with normal, fibrotic and cirrhotic livers. MATERIALS AND METHODS: Retrospective, institutional review board approved study (waiver of informed consent). Eighty-nine consecutive patients with 231 hepatic hemangiomas who underwent liver MR imaging for lesion characterization were included. Lesions were classified into three groups according to the patients' liver condition: no underlying liver disease (group 1), fibrosis (group 2) and cirrhosis (group 3). Qualitative and quantitative characteristics (number, size, signal intensities on T1-, T2-, and DW MR images, T2 shine-through effect, enhancement patterns (classical, rapidly filling, delayed filling), and ADC values) were compared. RESULTS: There were 160 (69%), 45 (20%), and 26 (11%) hemangiomas in groups 1, 2 and 3, respectively. Lesions were larger in patients with normal liver (group 1 vs. groups 2 and 3; P=.009). No difference was found between the groups on T2-weighted images (fat-suppressed fast spin-echo (P=.82) and single-shot (P=.25)) and in enhancement patterns (P=.56). Mean ADC values of hemangiomas were similar between groups 1, 2 and 3 (2.11±.52×10(-3)mm(2)/s, 2.1±.53×10(-3)mm(2)/s and 2.14±.44×10(-3)mm(2)/s, P=87, respectively). T2 shine-through effect was less frequently observed in cirrhosis (P=.02). CONCLUSION: MR imaging characteristics of hepatic hemangioma were similar in patients with normal compared to fibrotic and cirrhotic livers. Smaller lesion size was observed with liver disease and less T2 shine-through effect was seen in hemangiomas developed on cirrhosis, the latter being an important finding to highlight in these patients at risk of developing hepatocellular carcinoma.
Resumo:
Background: Infection with the hepatitis C virus (HCV) i s associatedwith hepatic iron accumulation. We performed a comprehensive analysisof serum ferritin levels and of their genetic determinants in thepathogenesis and treatment of patients with chronic hepatitis C enrolledin the Swiss Hepatitis C Cohort Study (SCCS).Methods: Serum ferritin levels at baseline o f therapy with p egylatedinterferon-α ( PEG-IFN-α) and ribavirin or b efore liver biopsy werecorrelated with clinical features of c hronic HCV infection, includingnecroinflammatory activity (N=970), fibrosis (N=980), steatosis (N=886)and response to treatment (N=876). The association b etween highferritin levels (> median) and the endpoints w as assessed b y logisticregression. In addition, a candidate gene analysis as well as a genomewideassociation study (GWAS) of serum ferritin levels were performed.Results: S erum ferritin > sex-specific median was one of the strongestpre-treatment predictors of failure to achieve SVR (P<0.0001, OR=0.46,95% CI=0.34-0.60). This association remained highly significant in amultivariate analysis (P=0.0001, OR=0.32, 95% CI=0.18-0.57), with anodds ratio c omparable to that of IL28B g enotype, and persisted afteradjustment for duration of infection. Additional independent predictors ofnonresponse were viral load, HCV genotype, presence of diabetes, andliver fibrosis stage. Higher serum ferritin levels were also independentlyassociated with severe liver fibrosis (P<0.0001, OR=2.67, 95% CI=1.66-4.28) a nd steatosis (P=0.0034, OR=2.34, 95% CI=1.33-4.12), but n otwith necroinflammatory a ctivity (P=0.3). No significant g eneticdeterminants of serum ferritin levels were identified.Conclusions: Elevated serum ferritin levels are associated withadvanced liver fibrosis, hepatic steatosis, and poor r esponse to IFN-α-based therapy in c hronic hepatitis C, i ndependently from IL28Bgenotype.
Resumo:
Accumulation of fat in the liver increases the risk to develop fibrosis and cirrhosis and is associated with development of the metabolic syndrome. Here, to identify genes or gene pathways that may underlie the genetic susceptibility to fat accumulation in liver, we studied A/J and C57Bl/6 mice that are resistant and sensitive to diet-induced hepatosteatosis and obesity, respectively. We performed comparative transcriptomic and lipidomic analysis of the livers of both strains of mice fed a high fat diet for 2, 10, and 30 days. We found that resistance to steatosis in A/J mice was associated with the following: (i) a coordinated up-regulation of 10 genes controlling peroxisome biogenesis and β-oxidation; (ii) an increased expression of the elongase Elovl5 and desaturases Fads1 and Fads2. In agreement with these observations, peroxisomal β-oxidation was increased in livers of A/J mice, and lipidomic analysis showed increased concentrations of long chain fatty acid-containing triglycerides, arachidonic acid-containing lysophosphatidylcholine, and 2-arachidonylglycerol, a cannabinoid receptor agonist. We found that the anti-inflammatory CB2 receptor was the main hepatic cannabinoid receptor, which was highly expressed in Kupffer cells. We further found that A/J mice had a lower pro-inflammatory state as determined by lower plasma levels and IL-1β and granulocyte-CSF and reduced hepatic expression of their mRNAs, which were found only in Kupffer cells. This suggests that increased 2-arachidonylglycerol production may limit Kupffer cell activity. Collectively, our data suggest that genetic variations in the expression of peroxisomal β-oxidation genes and of genes controlling the production of an anti-inflammatory lipid may underlie the differential susceptibility to diet-induced hepatic steatosis and pro-inflammatory state.
Resumo:
Liver stiffness values in transient elastography (TE) have to be interpreted with caution. Steatosis, congestion, acute inflammation and extrahepatic cholestasis can indeed influence measurements. Obtained stiffness values in the cirrhotic range can also be present in the absence of fibrosis as in hepatic amyloidosis. Here we report two cases of systemic amyloidosis with hepatic involvement where high stiffness values were measured at TE. In fact, deposits of amyloid may increase the rigidity of the liver parenchyma resulting in higher liver stiffness values. Therefore, results of TE should always be interpreted in their clinical context and if inconsistent, the performance of a liver biopsy might be necessary.
Resumo:
In liver, the glyoxylate cycle contributes to two metabolic functions, urea and glucose synthesis. One of the key enzymes in this pathway is glyoxylate reductase/hydroxypyruvate reductase (GRHPR) whose dysfunction in human causes primary hyperoxaluria type 2, a disease resulting in oxalate accumulation and formation of kidney stones. In this study, we provide evidence for a transcriptional regulation by the peroxisome proliferator-activated receptor alpha (PPARalpha) of the mouse GRHPR gene in liver. Mice fed with a PPARalpha ligand or in which PPARalpha activity is enhanced by fasting increase their GRHPR gene expression via a peroxisome proliferator response element located in the promoter region of the gene. Consistent with these observations, mice deficient in PPARalpha present higher plasma levels of oxalate in comparison with their wild type counterparts. As expected, the administration of a PPARalpha ligand (Wy-14,643) reduces the plasma oxalate levels. Surprisingly, this effect is also observed in null mice, suggesting a PPARalpha-independent action of the compound. Despite a high degree of similarity between the transcribed region of the human and mouse GRHPR gene, the human promoter has been dramatically reorganized, which has resulted in a loss of PPARalpha regulation. Overall, these data indicate a species-specific regulation by PPARalpha of GRHPR, a key gene of the glyoxylate cycle.
Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis.
Resumo:
RATIONALE: Lung injury leads to pulmonary inflammation and fibrosis through myeloid differentiation primary response gene 88 (MyD88) and the IL-1 receptor 1 (IL-1R1) signaling pathway. The molecular mechanisms by which lung injury triggers IL-1beta production, inflammation, and fibrosis remain poorly understood. OBJECTIVES: To determine if lung injury depends on the NALP3 inflammasome and if bleomycin (BLM)-induced lung injury triggers local production of uric acid, thereby activating the NALP3 inflammasome in the lung. Methods: Inflammation upon BLM administration was evaluated in vivo in inflammasome-deficient mice. Pulmonary uric acid accumulation, inflammation, and fibrosis were analyzed in mice treated with the inhibitor of uric acid synthesis or with uricase, which degrades uric acid. MEASUREMENTS AND MAIN RESULTS: Lung injury depends on the NALP3 inflammasome, which is triggered by uric acid locally produced in the lung upon BLM-induced DNA damage and degradation. Reduction of uric acid levels using the inhibitor of uric acid synthesis allopurinol or uricase leads to a decrease in BLM-induced IL-1beta production, lung inflammation, repair, and fibrosis. Local administration of exogenous uric acid crystals recapitulates lung inflammation and repair, which depend on the NALP3 inflammasome, MyD88, and IL-1R1 pathways and Toll-like receptor (TLR)2 and TLR4 for optimal inflammation but are independent of the IL-18 receptor. CONCLUSIONS: Uric acid released from injured cells constitutes a major endogenous danger signal that activates the NALP3 inflammasome, leading to IL-1beta production. Reducing uric acid tissue levels represents a novel therapeutic approach to control IL-1beta production and chronic inflammatory lung pathology.
Resumo:
The liver secretes triglyceride-rich VLDLs, and the triglycerides in these particles are taken up by peripheral tissues, mainly heart, skeletal muscle, and adipose tissue. Blocking hepatic VLDL secretion interferes with the delivery of liver-derived triglycerides to peripheral tissues and results in an accumulation of triglycerides in the liver. However, it is unclear how interfering with hepatic triglyceride secretion affects adiposity, muscle triglyceride stores, and insulin sensitivity. To explore these issues, we examined mice that cannot secrete VLDL [due to the absence of microsomal triglyceride transfer protein (Mttp) in the liver]. These mice exhibit markedly reduced levels of apolipoprotein B-100 in the plasma, along with reduced levels of triglycerides in the plasma. Despite the low plasma triglyceride levels, triglyceride levels in skeletal muscle were unaffected. Adiposity and adipose tissue triglyceride synthesis rates were also normal, and body weight curves were unaffected. Even though the blockade of VLDL secretion caused hepatic steatosis accompanied by increased ceramides and diacylglycerols in the liver, the mice exhibited normal glucose tolerance and were sensitive to insulin at the whole-body level, as judged by hyperinsulinemic euglycemic clamp studies. Normal hepatic glucose production and insulin signaling were also maintained in the fatty liver induced by Mttp deletion. Thus, blocking VLDL secretion causes hepatic steatosis without insulin resistance, and there is little effect on muscle triglyceride stores or adiposity
Resumo:
Hemorrhage and resuscitation (H/R) leads to phosphorylation of mitogen-activated stress kinases, an event that is associated with organ damage. Recently, a specific, cell-penetrating, protease-resistant inhibitory peptide of the mitogen-activated protein kinase c-JUN N-terminal kinase (JNK) was developed (D-JNKI-1). Here, using this peptide, we tested if inhibition of JNK protects against organ damage after H/R. Male Sprague-Dawley rats were treated with D-JNKI-1 (11 mg/kg, i.p.) or vehicle. Thirty minutes later, rats were hemorrhaged for 1 h to a MAP of 30 to 35 mmHg and then resuscitated with 60% of the shed blood and twice the shed blood volume as Ringer lactate. Tissues were harvested 2 h later. ANOVA with Tukey post hoc analysis or Kruskal-Wallis ANOVA on ranks, P < 0.05, was considered significant. c-JUN N-terminal kinase inhibition decreased serum alanine aminotransferase activity as a marker of liver injury by 70%, serum creatine kinase activity by 67%, and serum lactate dehydrogenase activity by 60% as compared with vehicle treatment. The histological tissue damage observed was blunted after D-JNKI-1 pretreatment both for necrotic and apoptotic cell death. Hepatic leukocyte infiltration and serum IL-6 levels were largely diminished after D-JNKI-1 pretreatment. The extent of oxidative stress as evaluated by immunohistochemical detection of 4-hydroxynonenal was largely abrogated after JNK inhibition. After JNK inhibition, activation of cJUN after H/R was also reduced. Hemorrhage and resuscitation induces a systemic inflammatory response and leads to end-organ damage. These changes are mediated, at least in part, by JNK. Therefore, JNK inhibition deserves further evaluation as a potential treatment option in patients after resuscitated blood loss.
Resumo:
Hepatic encephalopathy is a neurological syndrome occurring in patients with liver failure or in those with a large porto-systemic shunt. In cirrhotic patients, the current classification comprises covert and overt encephalopathy. Diagnosis of covert encephalopathy requires sensitive tests. Lactulose and rifaximin are the two leading therapeutic options. Rifaximin is efficacious for maintaining remission from hepatic encephalopathy. Liver transplantation should be discussed in cirrhotic patients with encephalopathy.
Resumo:
BACKGROUND AND AIMS: In critically ill patients, fractional hepatic de novo lipogenesis increases in proportion to carbohydrate administration during isoenergetic nutrition. In this study, we sought to determine whether this increase may be the consequence of continuous enteral nutrition and bed rest. We, therefore, measured fractional hepatic de novo lipogenesis in a group of 12 healthy subjects during near-continuous oral feeding (hourly isoenergetic meals with a liquid formula containing 55% carbohydrate). In eight subjects, near-continuous enteral nutrition and bed rest were applied over a 10 h period. In the other four subjects, it was extended to 34 h. Fractional hepatic de novo lipogenesis was measured by infusing(13) C-labeled acetate and monitoring VLDL-(13)C palmitate enrichment with mass isotopomer distribution analysis. Fractional hepatic de novo lipogenesis was 3.2% (range 1.5-7.5%) in the eight subjects after 10 h of near continuous nutrition and 1.6% (range 1.3-2.0%) in the four subjects after 34 h of near-continuous nutrition and bed rest. This indicates that continuous nutrition and physical inactivity do not increase hepatic de novo lipogenesis. Fractional hepatic de novo lipogenesis previously reported in critically ill patients under similar nutritional conditions (9.3%) (range 5.3-15.8%) was markedly higher than in healthy subjects (P<0.001). These data from healthy subjects indicate that fractional hepatic de novo lipogenesis is increased in critically ill patients.