18 resultados para Hard combinatorial scheduling
Resumo:
Combinatorial optimization involves finding an optimal solution in a finite set of options; many everyday life problems are of this kind. However, the number of options grows exponentially with the size of the problem, such that an exhaustive search for the best solution is practically infeasible beyond a certain problem size. When efficient algorithms are not available, a practical approach to obtain an approximate solution to the problem at hand, is to start with an educated guess and gradually refine it until we have a good-enough solution. Roughly speaking, this is how local search heuristics work. These stochastic algorithms navigate the problem search space by iteratively turning the current solution into new candidate solutions, guiding the search towards better solutions. The search performance, therefore, depends on structural aspects of the search space, which in turn depend on the move operator being used to modify solutions. A common way to characterize the search space of a problem is through the study of its fitness landscape, a mathematical object comprising the space of all possible solutions, their value with respect to the optimization objective, and a relationship of neighborhood defined by the move operator. The landscape metaphor is used to explain the search dynamics as a sort of potential function. The concept is indeed similar to that of potential energy surfaces in physical chemistry. Borrowing ideas from that field, we propose to extend to combinatorial landscapes the notion of the inherent network formed by energy minima in energy landscapes. In our case, energy minima are the local optima of the combinatorial problem, and we explore several definitions for the network edges. At first, we perform an exhaustive sampling of local optima basins of attraction, and define weighted transitions between basins by accounting for all the possible ways of crossing the basins frontier via one random move. Then, we reduce the computational burden by only counting the chances of escaping a given basin via random kick moves that start at the local optimum. Finally, we approximate network edges from the search trajectory of simple search heuristics, mining the frequency and inter-arrival time with which the heuristic visits local optima. Through these methodologies, we build a weighted directed graph that provides a synthetic view of the whole landscape, and that we can characterize using the tools of complex networks science. We argue that the network characterization can advance our understanding of the structural and dynamical properties of hard combinatorial landscapes. We apply our approach to prototypical problems such as the Quadratic Assignment Problem, the NK model of rugged landscapes, and the Permutation Flow-shop Scheduling Problem. We show that some network metrics can differentiate problem classes, correlate with problem non-linearity, and predict problem hardness as measured from the performances of trajectory-based local search heuristics.
Resumo:
MOTIVATION: Combinatorial interactions of transcription factors with cis-regulatory elements control the dynamic progression through successive cellular states and thus underpin all metazoan development. The construction of network models of cis-regulatory elements, therefore, has the potential to generate fundamental insights into cellular fate and differentiation. Haematopoiesis has long served as a model system to study mammalian differentiation, yet modelling based on experimentally informed cis-regulatory interactions has so far been restricted to pairs of interacting factors. Here, we have generated a Boolean network model based on detailed cis-regulatory functional data connecting 11 haematopoietic stem/progenitor cell (HSPC) regulator genes. RESULTS: Despite its apparent simplicity, the model exhibits surprisingly complex behaviour that we charted using strongly connected components and shortest-path analysis in its Boolean state space. This analysis of our model predicts that HSPCs display heterogeneous expression patterns and possess many intermediate states that can act as 'stepping stones' for the HSPC to achieve a final differentiated state. Importantly, an external perturbation or 'trigger' is required to exit the stem cell state, with distinct triggers characterizing maturation into the various different lineages. By focusing on intermediate states occurring during erythrocyte differentiation, from our model we predicted a novel negative regulation of Fli1 by Gata1, which we confirmed experimentally thus validating our model. In conclusion, we demonstrate that an advanced mammalian regulatory network model based on experimentally validated cis-regulatory interactions has allowed us to make novel, experimentally testable hypotheses about transcriptional mechanisms that control differentiation of mammalian stem cells. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Resumo:
Plant membrane compartments and trafficking pathways are highly complex, and are often distinct from those of animals and fungi. Progress has been made in defining trafficking in plants using transient expression systems. However, many processes require a precise understanding of plant membrane trafficking in a developmental context, and in diverse, specialized cell types. These include defense responses to pathogens, regulation of transporter accumulation in plant nutrition or polar auxin transport in development. In all of these cases a central role is played by the endosomal membrane system, which, however, is the most divergent and ill-defined aspect of plant cell compartmentation. We have designed a new vector series, and have generated a large number of stably transformed plants expressing membrane protein fusions to spectrally distinct, fluorescent tags. We selected lines with distinct subcellular localization patterns, and stable, non-toxic expression. We demonstrate the power of this multicolor 'Wave' marker set for rapid, combinatorial analysis of plant cell membrane compartments, both in live-imaging and immunoelectron microscopy. Among other findings, our systematic co-localization analysis revealed that a class of plant Rab1-homologs has a much more extended localization than was previously assumed, and also localizes to trans-Golgi/endosomal compartments. Constructs that can be transformed into any genetic background or species, as well as seeds from transgenic Arabidopsis plants, will be freely available, and will promote rapid progress in diverse areas of plant cell biology.
Resumo:
Arenaviruses are enveloped negative strand viruses that cause acute and chronic infections. Several Arenaviruses can cause severe hemorrhagic fever in humans. In West Africa Lassa virus causes several hundred thousand infections per year, while Junin, Machupo, Guanarito, and Sabia virus have emerged in South America. So far, only one drug is licensed against arenaviruses, the nucleoside analogue Ribavirin (Rib), which is effective when given early in disease, but shows only minor therapeutic effects in late stages of the infection. Previous works demonstrated that processing of the arenavirus glycoprotein precursor (GPC) by the cellular proprotein convertase site 1 protease (S1P), also known as subtilisin-kexinisozyme 1 (SKI-1), is crucial for cell-to-cell propagation of infectionand production of infectious virus. Recently, the SKI-1/S1P inhibitor PF-429242wasshownto inhibit Old World arenavirusGPCprocessing, cell-to-cell propagation, and infectious virus production. In the present study, we assessed the activity of PF-429242 against processing of the GPCs of the genetically and structurally more distant New World arenaviruses and found potent inhibition of processing of the GPCs of Junin, Machupo, and Guanarito virus. Using the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV), we studied the potency of PF-429242 in the context of acute and chronic infection. In line with published data, PF-429242 potently inhibited acute LCMV infection. PF-429242 was also highly active against chronic infection and drug treatment resulted in rapid extinction of the virus without emergence of drug-resistant variants. In a combinatorial drug approach, we found that PF-429242 potentiated the anti-viral effect of Rib in treatment of acute andchronic infection. Taken together, we showed that the SKI-1/S1P inhibitor PF-429242 is broadly active against GPC processing of all major human pathogenic arenaviruses. Apart from being potent in acute infection, the drug is remarkably active in clearing chronic infection and potentiated the anti-arenaviral activity of Rib.
Resumo:
AIM: The study aims to evaluate the effects of assertive community treatment (ACT) on the mental health and overall functioning of adolescents suffering from severe psychiatric disorders and who refuse any traditional child psychiatric care. There are a few studies evaluating the effects of ACT on a population of adolescents with psychiatric disorders. This short report highlights the impact of an ACT programme tailored to the needs of these patients, not only as an alternative to hospitalization, but also as a new form of intervention for patients that are difficult to engage. METHODS: The effect of ACT on 35 adolescents using the Health of the Nation Outcome Scales for Children and Adolescents (HoNOSCA) as a measuring tool in pre- and post-intervention was evaluated. RESULTS: The results show that the intervention was associated with a significant improvement on the HoNOSCA overall score, with the following items showing significant amelioration: hyperactivity/focus problems, non-organic somatic symptoms, emotional symptoms, scholastic/language skills, peer relationships, family relationships and school attendance. CONCLUSION: ACT appears as a feasible intervention for hard-to-engage adolescents suffering from psychiatric disorders. The intervention seems to improve their mental health and functioning. This pilot study may serve as a basis to prepare a controlled study that will also take the costs of the intervention into account.
Resumo:
The use of synthetic combinatorial peptide libraries in positional scanning format (PS-SCL) has emerged recently as an alternative approach for the identification of peptides recognized by T lymphocytes. The choice of both the PS-SCL used for screening experiments and the method used for data analysis are crucial for implementing this approach. With this aim, we tested the recognition of different PS-SCL by a tyrosinase 368-376-specific CTL clone and analyzed the data obtained with a recently developed biometric data analysis based on a model of independent and additive contribution of individual amino acids to peptide antigen recognition. Mixtures defined with amino acids present at the corresponding positions in the native sequence were among the most active for all of the libraries. Somewhat surprisingly, a higher number of native amino acids were identifiable by using amidated COOH-terminal rather than free COOH-terminal PS-SCL. Also, our data clearly indicate that when using PS-SCL longer than optimal, frame shifts occur frequently and should be taken into account. Biometric analysis of the data obtained with the amidated COOH-terminal nonapeptide library allowed the identification of the native ligand as the sequence with the highest score in a public human protein database. However, the adequacy of the PS-SCL data for the identification for the peptide ligand varied depending on the PS-SCL used. Altogether these results provide insight into the potential of PS-SCL for the identification of CTL-defined tumor-derived antigenic sequences and may significantly implement our ability to interpret the results of these analyses.
Resumo:
The stable co-existence of two haploid genotypes or two species is studied in a spatially heterogeneous environment submitted to a mixture of soft selection (within-patch regulation) and hard selection (outside-patch regulation) and where two kinds of resource are available. This is analysed both at an ecological time-scale (short term) and at an evolutionary time-scale (long term). At an ecological scale, we show that co-existence is very unlikely if the two competitors are symmetrical specialists exploiting different resources. In this case, the most favourable conditions are met when the two resources are equally available, a situation that should favour generalists at an evolutionary scale. Alternatively, low within-patch density dependence (soft selection) enhances the co-existence between two slightly different specialists of the most available resource. This results from the opposing forces that are acting in hard and soft regulation modes. In the case of unbalanced accessibility to the two resources, hard selection favours the most specialized genotype, whereas soft selection strongly favours the less specialized one. Our results suggest that competition for different resources may be difficult to demonstrate in the wild even when it is a key factor in the maintenance of adaptive diversity. At an evolutionary scale, a monomorphic invasive evolutionarily stable strategy (ESS) always exists. When a linear trade-off exists between survival in one habitat versus that in another, this ESS lies between an absolute adjustment of survival to niche size (for mainly soft-regulated populations) and absolute survival (specialization) in a single niche (for mainly hard-regulated populations). This suggests that environments in agreement with the assumptions of such models should lead to an absence of adaptive variation in the long term.
Resumo:
A novel approach for the identification of tumor antigen-derived sequences recognized by CD8(+) cytolytic T lymphocytes (CTL) consists in using synthetic combinatorial peptide libraries. Here we have screened a library composed of 3.1 x 10(11) nonapeptides arranged in a positional scanning format, in a cytotoxicity assay, to search the antigen recognized by melanoma-reactive CTL of unknown specificity. The results of this analysis enabled the identification of several optimal peptide ligands, as most of the individual nonapeptides deduced from the primary screening were efficiently recognized by the CTL. The results of the library screening were also analyzed with a mathematical approach based on a model of independent and additive contribution of individual amino acids to antigen recognition. This biometrical data analysis enabled the retrieval, in public databases, of the native antigenic peptide SSX-2(41-49), whose sequence is highly homologous to the ones deduced from the library screening, among the ones with the highest stimulatory score. These results underline the high predictive value of positional scanning synthetic combinatorial peptide library analysis and encourage its use for the identification of CTL ligands.
Resumo:
This study looks at how increased memory utilisation affects throughput and energy consumption in scientific computing, especially in high-energy physics. Our aim is to minimise energy consumed by a set of jobs without increasing the processing time. The earlier tests indicated that, especially in data analysis, throughput can increase over 100% and energy consumption decrease 50% by processing multiple jobs in parallel per CPU core. Since jobs are heterogeneous, it is not possible to find an optimum value for the number of parallel jobs. A better solution is based on memory utilisation, but finding an optimum memory threshold is not straightforward. Therefore, a fuzzy logic-based algorithm was developed that can dynamically adapt the memory threshold based on the overall load. In this way, it is possible to keep memory consumption stable with different workloads while achieving significantly higher throughput and energy-efficiency than using a traditional fixed number of jobs or fixed memory threshold approaches.
Resumo:
AIMS: More than two billion people worldwide are deficient in key micronutrients. Single micronutrients have been used at high doses to prevent and treat dietary insufficiencies. Yet the impact of combinations of micronutrients in small doses aiming to improve lipid disorders and the corresponding metabolic pathways remains incompletely understood. Thus, we investigated whether a combination of micronutrients would reduce fat accumulation and atherosclerosis in mice. METHODS AND RESULTS: Lipoprotein receptor-null mice fed with an original combination of micronutrients incorporated into the daily chow showed reduced weight gain, body fat, plasma triglycerides, and increased oxygen consumption. These effects were achieved through enhanced lipid utilization and reduced lipid accumulation in metabolic organs and were mediated, in part, by the nuclear receptor PPARα. Moreover, the micronutrients partially prevented atherogenesis when administered early in life to apolipoprotein E-null mice. When the micronutrient treatment was started before conception, the anti-atherosclerotic effect was stronger in the progeny. This finding correlated with decreased post-prandial triglyceridaemia and vascular inflammation, two major atherogenic factors. CONCLUSION: Our data indicate beneficial effects of a combination of micronutritients on body weight gain, hypertriglyceridaemia, liver steatosis, and atherosclerosis in mice, and thus our findings suggest a novel cost-effective combinatorial micronutrient-based strategy worthy of being tested in humans.