50 resultados para GRANITIC-ROCKS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Among the large number of granitic intrusions within the Dora-Maira massif, several main types can be distinguished. In this study we report field, petrographic and geochemical investigations as well as zircon typology and conventional U-Pb zircon dating of plutons representing these types. The main results are as follows: the Punta Muret augengneiss is a polymetamorphosed peraluminous granite of anatectic origin. It is 457 +/- 2 Ma old and represents one of the numerous Caledonian orthogneisses of the Alpine basement. All other dated granites are of Late Variscan age. The Cavour leucogranite is an evolved granite of probably calc-alkaline affiliation, dated at 304 +/- 2 Ma. The dioritic and granodioritic facies of the Malanaggio diorite (auct.) are typical calc-alkaline rocks, whose respective age of 290 +/- 2 and 288 +/- 2 Ma overlap within errors. The Sangone and Freidour granite types have very similar alkali-calcic characteristics; their ages are poorly constrained between 267-279 and 268-283 Ma, respectively. The new data for the Dora-Maira granites are in keeping with models of the overall evolution of the Late- to Post-Variscan magmatism in the Alpine area in terms of age distribution and progressive geochemical evolution towards alkaline melts. In a first approximation, granitic rocks across the Variscan belt seem to be increasingly younger towards the internal (southern) parts of the orogen. A Carboniferous, distensive Basin and Range situation is thought to be responsible for the magmatic activity. This tectonic context is comparable to the back-are opening of an active continental margin. The observed southward migration of the magmatism could be linked to the roll-back of the subducting Paleotethyan oceanic plate along the Variscan cordillera.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The northeastern portion of the Mont Blanc massif in western Switzerland is predominantly comprised of the granitic rocks of the Mont Blanc intrusive suit, and the Mont Blanc basement gneisses. Within these metamorphic rocks are a variety of sub-economic Fe skarns. The mineral assemblages and fluid inclusions from these rocks have been used to derive age, pressure, temperature and fluid composition constraints for two Variscan events. Metamorphic hornblendes within the assemblages from the basement amphibolites and iron sk:lms have been dated using Ar-40/Ar-39, and indicate that these metamorphic events have a minimum age of approximately 334 Ma. Garnet-hornblende-plagioclase thermobarometry and stable isotope data obtained from the basement amphibolites are consistent with metamorphic temperatures in the range 515 to 580 degrees C, and pressures ranging from 5 to 8 kbar. Garnet-hornblende-magnetite thermobarometry and fluid inclusion studies indicate that the iron skarns formed at slightly lower temperatures, ranging from 400 to 500 degrees C in the presence of saline fluids at formational pressures similar to those experienced by the basement amphibolites. Late Paleozoic minimum uplift rates and geothermal gradients calculated using these data and the presence of Ladinien ichnofossils are on the order of 0.32 mm/year and 20 degrees C/km respectively. These uplift rates and geothermal gradients differ from those obtained from the neighbouring Aiguilles Rouges massif and indicate that these two massifs experienced different metamorphic conditions during the Carboniferous and Permian periods. During the early to late Carboniferous period the relative depths of the two massifs were reversed with the Aiguilles Rouges being initially unroofed at a much greater rate than the Mont Blanc, but experiencing relatively slower uplift rates near the termination of the Variscan orogeny.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report new high-precision U/Pb ages and geochemical data from the Chalten Plutonic Complex to better understand the link between magmatism and tectonics in Southern Patagonia. This small intrusion located in the back-arc region east of the Patagonian Batholith provides important insights on the role of arc migration and subduction erosion. The Chalten Plutonic Complex consists of a suite of calc-alkaline gabbroic to granitic rocks, which were emplaced over 530 kyr between 16.90 +/- 0.05 Ma and 16.37 +/- 0.02 Ma. A synthesis of age and geochemical data from other intrusions in Patagonia reveals (a) striking similarities between the Chalten Plutonic Complex and the Neogene intrusions of the batholith and differences to other back-arc intrusions such as Torres del Paine (b) a distinct E-W trend of calc-alkaline magmatic activity between 20 and 17 Ma. We propose that this trend reflects the eastward migration of the magmatic arc, and the consistent age pattern between the subduction segments north and south of the Chile triple junction suggests a causal relation with a period of fast subduction of the Farallon-Nazca plate during the Early Miocene. Previously proposed flat slab models are not consistent with the present location and morphology of the Southern Patagonian Batholith. We advocate, alternatively, that migration of the magmatic arc is caused by subduction erosion due to the increasing subduction velocities during the Early Miocene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Li contents [Li] and isotopic composition (delta Li-7) of mafic minerals (mainly amphibole and clinopyroxene) from the alkaline to peralkaline Ilimaussaq plutonic complex, South Greenland, track the behavior of Li and its isotopes during magmatic differentiation and final cooling of an alkaline igneous system. [Li] in amphibole increase from < 10 ppm in Caamphiboles of the least differentiated unit to >3000 ppm in Na-amphiboles of the highly evolved units. In contrast, [Li] in clinopyroxene are comparatively low (<85 ppm) and do not vary systematically with differentiation. The distribution of Li between amphibole and pyroxene is controlled by the major element composition of the minerals (Ca-rich and Na-rich, respectively) and changes in oxygen fugacity (due to Li incorporation via coupled substitution with ferric iron) during magmatic differentiation. delta(7) Li values of all minerals span a wide range from + 17 to - 8 parts per thousand, with the different intrusive units of the complex having distinct Li isotopic systematics. Amphiboles, which dominate the Li budget of whole-rocks from the inner part of the complex, have constant delta Li-7 of + 1.8 +/- 2.2 parts per thousand (2 sigma, n = 15). This value reflects a homogeneous melt reservoir and is consistent with their mantle derivation, in agreement with published O and Nd isotopic data. Clinopyroxenes of these samples are consistently lighter, with Delta Li-7(amph-cpx). as large as 8 parts per thousand and are thus not in Li isotope equilibrium. These low values probably reflect late-stage diffusion of Li into clinopyroxene during final cooling of the rocks, thus enriching the clinopyroxene in 6 Li. At the margin of the complex delta(7) Li in the syenites increases systematically, from +2 to high values of + 14 parts per thousand. This, coupled with the observed Li isotope systematics of the granitic country rocks, reflects post-magmatic open-system processes occurring during final cooling of the intrusion. Although the shape and magnitude of the Li isotope and elemental profiles through syenite and country rock are suggestive of diffusion-driven isotope fractionation, they cannot be modeled by one-dimensional diffusive transport and point to circulation of a fluid having a high 67 Li value (possibly seawater) along the chilled contact. In all, this study demonstrates that Li isotopes can be used to identify complex fluid- and diffusion-governed processes taking place during the final cooling of such rocks. (c) 2007 Elsevier B.V All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study reassesses the development of compositional layering during the growth of granitic plutons, with emphasis on fractional crystallization and its interaction with both injection and inflation-related deformation. The Dolbel batholith (SW Niger) consists of 14, kilometre-sized plutons emplaced by pulsed magma inputs. Each pluton has a coarse-grained core and a peripheral layered series. Rocks consist of albite (An(<= 11)), K-feldspar (Or(96 99), Ab(1) (4)), quartz, edenite (X(Mg)=0337-0.55), augite (X(Mg)=0.65-0.72) and accessories (apatite, titanite and Fe-Ti-oxides). Whole-rock compositions are metaluminous, sodic (K(2)O/Na(2)O=0.49-0.62) and iron-rich [FeO(tot)/(FeO(tot)+MgO)=0.65-0.82]. The layering is present as size-graded and modally graded, sub-vertical, rhythmic units. Each unit is composed of three layers, which are, towards the interior: edenite +/- plagioclase (C(a/p)), edenite+plagioclase+augite+quartz (C(q)), and edenite+plagioclase+augite+quartz+K-feldspar (C(k)). All phases except quartz show zoned microstructures consisting of external intercumulus overgrowths, a central section showing oscillatory zoning and, in the case of amphibole and titanite, complexly zoned cores. Ba and Sr contents of feldspars decrease towards the rims. Plagioclase crystal size distributions are similar in all units, suggesting that each unit experienced a similar thermal history. Edenite, characteristic of the basal C(a/p) layer, is the earliest phase to crystallize. Microtextures and phase diagrams suggest that edenite cores may have been brought up with magma batches at the site of emplacement and mechanically segregated along the crystallized wall, whereas outer zones of the same crystals formed in situ. The subsequent C(q) layers correspond to cotectic compositions in the Qz-Ab-Or phase diagram at P(H2O)=5 kbar. Each rhythmic unit may therefore correspond to a magma batch and their repetition to crystallization of recurrent magma recharges. Microtextures and chemical variations in major phases allow four main crystallization stages to be distinguished: (1) open-system crystallization in a stirred magma during magma emplacement, involving dissolution and overgrowth (core of edenite and titanite crystals); (2) in situ fractional crystallization in boundary layers (C(a/p) and C(q) layers); (3) equilibrium `en masse' eutectic crystallization (C(k) layers); (4) compaction and crystallization of the interstitial liquid in a highly crystallized mush (e. g. feldspar intercumulus overgrowths). It is concluded that the formation of the layered series in the Dolbel plutons corresponds principally to in situ differentiation of successive magma batches. The variable thickness of the Ck layers and the microtextures show that crystallization of a rhythmic unit stops and it is compacted when a new magma batch is injected into the chamber. Therefore, assembly of pulsed magma injections and fractional crystallization are independent, but complementary, processes during pluton construction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Petrographic, mineralogical, and stable isotopes (delta C-13, delta O-18 values) compositions were used to characterise marbles and sedimentary carbonate rocks from central Morocco, which are considered to be a likely source of ornamental and building material from Roman time to the present day. This new data set was used in the frame of an archaeometric provenance study on Roman artefacts from the town of Thamusida (Kenitra, north Morocco), to assess the potential employment of these rocks for the manufacture of the archaeological materials. A representative set of samples from marbles and other carbonate rocks (limestone, dolostone) were collected in several quarries and outcrops in the Moroccan Meseta, in a region extending from the Meknes-Khenifra alignment to the Atlantic Ocean. All the samples were studied using a petrographic, mineralogical and geochemical methods. The petrographic and minerological investigations (optical microscopy, electron microscopy, X-ray diffraction) allowed to group the carbonate rocks in limestones, foliated limestone, diagenetic breccias and dolostone. The limestones could be further grouped as mudstones, wackestones-packstones, crinoid grainstones, oolitic grainstone and floatstones. Textural differences allowed to define marbles varieties. The stable carbon and oxygen isotope composition proved to be quite useful in the discrimination of marble sources, with apparently less discriminatory potential for carbonate rocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agates from the Bighorn district in Montana (USA), the so-called Dryhead area, and their adjacent host rocks have been examined in the present study. Analyses by XRD, polarizing microscopy, LA-ICP-MS, cathodoluminescence (CL), SEM and of oxygen isotopes were performed to obtain information surrounding the genesis of this agate type. Investigations of the agate microstructure by polarizing microscopy and CL showed that chalcedony layers and macrocrystalline quartz crystals may have formed by crystallization from the same silica source by a process of self-organization. High defect densities and internal structures (e. g. sector zoning) of quartz indicate that crystallization went rapidly under non-equilibrium conditions. Most trace-element contents in macrocrystalline quartz are less than in chalcedony due to a process of `self-purification', which also caused the formation of Fe oxide inclusions and spherules. Although the agates formed in sedimentary host rocks, analytical data indicate participation of hydrothermal fluids during agate formation. Trace elements (REE distribution patterns, U contents up to 70 ppm) and CL features of agate (transient blue CL), as well as associated minerals (fluorite, REE carbonates) point to the influence of hydrothermal processes on the genesis of the Dryhead agates. However, formation temperatures <120 degrees C were calculated from O-isotope compositions between 28.9 parts per thousand (quartz) and 32.2 parts per thousand (chalcedony).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional U-Pb ages on zircon and monazite demonstrate that granites and gabbros intruded during a short time span of 5 Ma between 293 and 288 Ma in several polycyclic basement units of the Western Austroalpine domain. This bimodal activity reflects increasing underplating of an upwelling mantle at the base of a thinning post-Variscan continental crust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent isotopic and biochronologic dating has demonstrated that the Gets nappe contains remnants of the oldest part of the oceanic crust of the Alpine Tethys. The ophiolites are associated with deep sea sediments, platform carbonates and continental crustal elements suggesting a transitional environment between continental and oceanic crust. Therefore, the ophiolites from the Gets nappe provide the opportunity to assess the nature of mantle source and the magma evolution during the final rifting stage of the European lithosphere. Trace clement analyses of mafic rocks can he divided into two sets: (1) P, Zr and Y contents are consistent with those of mid-ocean ridge basalts and REE patterns have a P-MORB affinity. (2) P,Zr Ti and Y contents are compatible with within-plate basalts and are characterized by REE spectra similar to that of T-MORB. Both have Nd isotopic compositions similar to those of synrift magma of the Red Sea and to the Rhine Graben. The model ages are in agreement with an LREE-enriched subcontinental mantle source derived from depleted mantle 800 to 900 Ma ago. Minor, trace element and Sm-Nd compositions suggest that these rocks are basaltic relies of an earliest stage of oceanic spreading i.e. an embryonic ocean. Comparison between REE patterns, Nd and Sr isotope compositions, isotopic and biochronologic ages from different Alpine Tethys ophiolites shows that samples with enriched LREE are from the older ophiolitic suites and are relies of the embryonic ocean floor. Later phases of ocean spreading are characterized by basalts that are depleted in LREE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was initiated to investigate partial melting within the high-grade metamorphic rocks beneath the Little Cottonwood contact aureole (Utah, USA), in order to understand the melt generation, melt migration, and geometry of initial melt distribution on grain scale during crustal anatexis. The emplacement of the Little Cottonwood stock produced a contact aureole in the pelitic host rocks of the Big Cottonwood formation (BC). Metamorphic isogrades in pelitic rocks range form biotite to 2nd sillimanite grade as a function of distance from the contact. Migmatites are restricted to the highest grade and resulted form partial melting of the BC formation rocks. First melt was produced by a combined muscovite/biotite dehydration reaction in the sillimanite + k-feldspar stability field. Melt extraction from the pelites resulted in restites (magnetite + cordierite + alumosilicate ± biotite) surrounded by feldspar enriched quartzite zones. This texture is the result of gradual infiltration of partial melts into the quartzite. Larger, discrete melt accumulation occurred in extensional or transpressional domains such as boudin necks, veins, and ductile shear zones. Melt composition are Si02- rich, crystallized as pegmatites, and apparently were very mobile. They were able to infiltrate the quartzite pervaisivly. These melts are similar in composition to first melts produced in the hydrothermal partial melt experiments at 2kbar between 700 - 800°C on fine grained high metamorphic rocks (andalusite-cordierited-biotite-zone) of the BC formation. The experimental melts are water rich and in disequilibrium with the melting rock. Initial melt composition is heterogeneous for short run duration, reflective a lack of chemical equilibrium between individual melt pools. Rock core scale heterogeneity decreased with time indicating partial homogenization of melt compositions. A simultaneous shift of melt composition to higher silica content with time was observed. The silica content of the melt increased due to local melt/mineral reactions. Melt textures indicate that reactive melt transport is most efficient along grain boundaries rimmed by dissimilar grains. Melt heterogeneity resulted in chemical potential gradients which are major driving forces for initial melt migration and govern melt distribution during initial melting. An additional subject of the thesis is the crystal size distributions of opaque minerals in a fine-grained, high-grade meta-pelite of the Big Cottonwood which were obtained from 3D X-ray tomography (uCT) and 2D thin section analysis. µCT delivers accurate size distributions within a restricted range (~ a factor of 20 in size in a single 3D image), while the absolute number of crystals is difficult to obtain from these sparsely distributed, small crystals on the basis of 2D images. Crystal size distributions obtained from both methods are otherwise similar. - Ce travail de recherche a été entrepris dans le but d'étudier les processus de fusion partielle dans les roches fortement métamorphiques de l'auréole de contact de Little Cottonwood (Utah, USA) et ceci afin de comprendre la génération de liquide de fusion, la migration de ces liquides et la géométrie de la distribution initiale des liquides de fusion à l'échelle du grain durant l'anatexie de la croûte. L'emplacement du petit massif intrusif de Little Cottonwood a produit une auréole de contact dans les roches pélitiques encaissantes appartenant à la Foimation du Big Cottonwood (BC). Les isogrades métamorphiques dans les roches pélitiques varient de l'isograde de la biotite à la deuxième isograde de la sillimanite en fonction de la distance par rapport au massif intrusif. Les migmatites sont restreintes aux zones montrant le plus haut degré métamorphique et résultent de la fusion partielle des roches de la Formation de BC. Le premier liquide de fusion a été produit par la réaction de déshydratation combinée de la muscovite et de la biotite dans le champ de stabilité du feldspath potassique Pt de la sillimanite. L'extraction du liquide de fusion des pélites forme des restites (magnétites + cordiérite + aluminosilicate ± biotite) entourées par des zones de quartzites enrichies en feldspath. Cette texture est le résultat de l'infiltration graduelle du liquide de fusion partielle dans les quartzites. Des accumulations distinctes et plus larges de liquide de fusion ont lieu dans des domaines d'extension ou de transpression tels que les boudins, les veines, et les zones de cisaillement ductile. La composition des liquides de fusion est similaire à celle des liquides pegmatoïdes, et ces liquides sont apparemment très mobiles et capables d'infiltrer les quartzites. Ces liquides de fusion ont la même composition que les premiers liquides produits dans les expériences hydrotheunales de fusion partielle à 2kbar et entre 700-800° C sur les roches finement grenues et hautement métamorphiques (andalousite-cordiérite-biotite zone) de la Formation de BC. Les liquides de fusion obtenus expérimentalement sont riches en eau et sont en déséquilibre avec la roche en fusion. La composition initiale des liquides de fusion est hétérogène pour les expériences de courte durée et reflète l'absence d'équilibre chimique entre les différentes zones d'accumulation des liquides de fusion. L'hétérogénéité à l'échelle du noyau s'estompe avec le temps et témoigne de l'homogénéisation de la composition des liquides de fusion. Par ailleurs, on observe parallèlement un décalage de la composition des liquides vers des compositions plus riches en silice au cours du temps. Le contenu en silice des liquides de fusion évolue vers un liquide pegmatitique en raison des réactions liquides/minéraux. Les textures des liquides de fusion indiquent que le transport des liquides est plus efficace le long des bordures de grains bordés par des grains différents. Aucun changement apparent du volume total n'est visible. L'hétérogénéité des liquides s'accompagne d'un gradient de potentiel chimique qui sert de moteur principal à la migration des liquides et à la distribution des liquides durant la fusion. Un sujet complémentaire de ce travail de thèse réside dans l'étude de la distribution de la taille des cristaux opaques dans les pélites finement grenues et fortement métamorphiques de la Formation de Big Cottonwood. Les distributions de taille ont été obtenues suite à l'analyse d'images 3D acquise par tomographie ainsi que par analyse de lames minces. La microtomographie par rayon X fournit une distribution de taille précise sur une marge restreinte (- un facteur de taille 20 dans une seule image 3D), alors que le nombre absolu de cristaux est difficile à obtenir sur la base d'image 2D en raison de la petite taille et de la faible abondance de ces cristaux. Les distributions de taille obtenues par les deux méthodes sont sinon similaire. Abstact: Chemical differentiation of the primitive Earth was due to melting and separation of melts. Today, melt generation and emplacement is still the dominant process for the growth of the crust. Most granite formation is due to partial melting of the lower crust, followed by transport of magma through the crust to the shallow crust where it is emplaced. Partial melting and melt segregation are essential steps before such a granitic magma can ascent through the crust. The chemistry and physics of partial melting and segregation is complex. Hence detailed studies, in which field observations yield critical information that can be compared to experimental observations, are crucial to the understanding of these fundamental processes that lead and are leading to the chemical stratification of the Earth. The research presented in this thesis is a combined field and experimental study of partial melting of high-grade meta-pelitic rocks of the Little Cottonwood contact aureole (Utah, USA). Contact metamorphic rocks are ideal for textural studies of melt generation, since the relatively short times of the metamorphic event prevents much of the recrystallization which plagues textural studies of lower crustal rocks. The purpose of the study is to characterize melt generation, identify melting reactions, and to constrain melt formation, segregation and migration mechanisms. In parallel an experimental study was undertaken to investigate melt in the high grade meta pelitic rocks, to confirm melt composition, and to compare textures of the partial molten rock cores in the absence of deformation. Results show that a pegmatoidal melt is produced by partial melting of the pelitic rocks. This melt is highly mobile. It is capable of pervasive infiltration of the adjacent quartzite. Infiltration results in rounded quartz grains bordered by a thin feldspar rim. Using computed micro X-ray tomography these melt networks can be imaged. The infiltrated melt leads to rheological weakening and to a decompaction of the solid quartzite. Such decompaction can explain the recent discovery of abundant xenocrysts in many magmas, since it favors the isolation of mineral grains. Pervasive infiltration is apparently strongly influenced by melt viscosity and melt-crystal wetting behavior, both of which depend on the water content of melt and the temperature. In all experiments the first melt is produced on grain boundaries, dominantly by the local minerals. Grain scale heterogeneity of a melting rock leads thus to chemical concentration gradients in the melt, which are the driving force for initial melt migration. Pervasive melt films along grain boundaries leading to an interconnected network are immediately established. The initial chemical heterogeneities in the melt diminish with time. Résumé large public: La différenciation chimique de la Terre primitive est la conséquence de la fusion des roches et de la séparation des liquides qui en résultent. Aujourd'hui, la production de liquide magmatique est toujours le mécanisme dominant pour la croissance de la croûte terrestre. Ainsi la formation de la plupart des granites est un processus qui implique la production de magma par fusion partielle de la croûte inférieure, la migration de ces magmas à travers la croûte et finalement son emplacement dans les niveaux superficielle de la croûte terrestre. Au cours de cette évolution, les processus de fusion partielle et de ségrégation sont des étapes indispensables à l'ascension des granites à travers la croûte. Les conditions physico-chimiques nécessaires à la fusion partielle et à l'extraction de ces liquides sont complexes. C'est pourquoi des études détaillées des processus de fusion partielle sont cruciales pour la compréhension de ces mécanismes fondamentaux responsables de la stratification chimique de la Terre. Parmi ces études, les observations de terrain apportent notamment des informations déterminantes qui peuvent être comparées aux données expérimentales. Le travail de recherche présenté dans ce mémoire de thèse associe études de terrain et données expérimentales sur la fusion partielle des roches pélitiques de haut degré métamorphiques provenant de l'auréole de contact de Little Cottonwood (Utah, USA). Les roches du métamorphisme de contact sont idéales pour l'étude de la folination de liquide de fusion. En effet, la durée relativement courte de ce type d'événement métamorphique prévient en grande partie la recristallisation qui perturbe les études de texture des roches dans la croûte inférieure. Le but de cette étude est de caractériser la génération des liquides de fusion, d'identifier les réactions responsables de la fusion de ces roches et de contraindre la formation de ces liquides et leur mécanisme de ségrégation et de migration. Parallèlement, des travaux expérimentaux ont été entrepris pour reproduire la fusion partielle de ces roches en laboratoire. Cette étude a été effectuée dans le but de confirmer la composition chimique des liquides, et de comparer les textures obtenues en l'absence de déformation. Les résultats montrent qu'un liquide de fusion pegmatoïde est produit par fusion partielle des roches pélitiques. La grande mobilité de ce liquide permet une infiltration pénétrative dans les quarzites. Ces infiltrations se manifestent par des grains de quartz arrondis entourés par une fine bordure de feldspath. L'utilisation de la tomography à rayons X a permis d'obtenir des images de ce réseau de liquide de fusion. L'infiltration de liquide de fusion entraîne un affaiblissement de la rhéologie de la roche ainsi qu'une décompaction des quartzites massifs. Une telle décompaction peut expliquer la découverte récente d'abondants xénocristaux dans beaucoup de magmas, puisque elle favorise l'isolation des minéraux. L'infiltration pénétrative est apparemment fortement influencée par la viscosité du fluide de fusion et le comportement de la tension superficielle entre les cristaux et le liquide, les deux étant dépendant du contenu en eau dans le liquide de fusion et de la température. Dans toutes les expériences, le premier liquide est produit sur les bordures de grains, principalement par les minéraux locaux. L'hétérogénéité à l'échelle des grains d'une roche en fusion conduit donc à un gradient de concentration chimique dans le liquide, qui sert de moteur à l'initiation de la migration du liquide. Des fines couches de liquide de fusion le long de bordures de grains formant un réseau enchevêtré s'établit immédiatement. Les hétérogénéités chimiques initiales dans le liquide s'estompent avec le temps.