53 resultados para Empirical Flow Models


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Models of codon evolution have attracted particular interest because of their unique capabilities to detect selection forces and their high fit when applied to sequence evolution. We described here a novel approach for modeling codon evolution, which is based on Kronecker product of matrices. The 61 × 61 codon substitution rate matrix is created using Kronecker product of three 4 × 4 nucleotide substitution matrices, the equilibrium frequency of codons, and the selection rate parameter. The entities of the nucleotide substitution matrices and selection rate are considered as parameters of the model, which are optimized by maximum likelihood. Our fully mechanistic model allows the instantaneous substitution matrix between codons to be fully estimated with only 19 parameters instead of 3,721, by using the biological interdependence existing between positions within codons. We illustrate the properties of our models using computer simulations and assessed its relevance by comparing the AICc measures of our model and other models of codon evolution on simulations and a large range of empirical data sets. We show that our model fits most biological data better compared with the current codon models. Furthermore, the parameters in our model can be interpreted in a similar way as the exchangeability rates found in empirical codon models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the advancement of high-throughput sequencing and dramatic increase of available genetic data, statistical modeling has become an essential part in the field of molecular evolution. Statistical modeling results in many interesting discoveries in the field, from detection of highly conserved or diverse regions in a genome to phylogenetic inference of species evolutionary history Among different types of genome sequences, protein coding regions are particularly interesting due to their impact on proteins. The building blocks of proteins, i.e. amino acids, are coded by triples of nucleotides, known as codons. Accordingly, studying the evolution of codons leads to fundamental understanding of how proteins function and evolve. The current codon models can be classified into three principal groups: mechanistic codon models, empirical codon models and hybrid ones. The mechanistic models grasp particular attention due to clarity of their underlying biological assumptions and parameters. However, they suffer from simplified assumptions that are required to overcome the burden of computational complexity. The main assumptions applied to the current mechanistic codon models are (a) double and triple substitutions of nucleotides within codons are negligible, (b) there is no mutation variation among nucleotides of a single codon and (c) assuming HKY nucleotide model is sufficient to capture essence of transition- transversion rates at nucleotide level. In this thesis, I develop a framework of mechanistic codon models, named KCM-based model family framework, based on holding or relaxing the mentioned assumptions. Accordingly, eight different models are proposed from eight combinations of holding or relaxing the assumptions from the simplest one that holds all the assumptions to the most general one that relaxes all of them. The models derived from the proposed framework allow me to investigate the biological plausibility of the three simplified assumptions on real data sets as well as finding the best model that is aligned with the underlying characteristics of the data sets. -- Avec l'avancement de séquençage à haut débit et l'augmentation dramatique des données géné¬tiques disponibles, la modélisation statistique est devenue un élément essentiel dans le domaine dé l'évolution moléculaire. Les résultats de la modélisation statistique dans de nombreuses découvertes intéressantes dans le domaine de la détection, de régions hautement conservées ou diverses dans un génome de l'inférence phylogénétique des espèces histoire évolutive. Parmi les différents types de séquences du génome, les régions codantes de protéines sont particulièrement intéressants en raison de leur impact sur les protéines. Les blocs de construction des protéines, à savoir les acides aminés, sont codés par des triplets de nucléotides, appelés codons. Par conséquent, l'étude de l'évolution des codons mène à la compréhension fondamentale de la façon dont les protéines fonctionnent et évoluent. Les modèles de codons actuels peuvent être classés en trois groupes principaux : les modèles de codons mécanistes, les modèles de codons empiriques et les hybrides. Les modèles mécanistes saisir une attention particulière en raison de la clarté de leurs hypothèses et les paramètres biologiques sous-jacents. Cependant, ils souffrent d'hypothèses simplificatrices qui permettent de surmonter le fardeau de la complexité des calculs. Les principales hypothèses retenues pour les modèles actuels de codons mécanistes sont : a) substitutions doubles et triples de nucleotides dans les codons sont négligeables, b) il n'y a pas de variation de la mutation chez les nucléotides d'un codon unique, et c) en supposant modèle nucléotidique HKY est suffisant pour capturer l'essence de taux de transition transversion au niveau nucléotidique. Dans cette thèse, je poursuis deux objectifs principaux. Le premier objectif est de développer un cadre de modèles de codons mécanistes, nommé cadre KCM-based model family, sur la base de la détention ou de l'assouplissement des hypothèses mentionnées. En conséquence, huit modèles différents sont proposés à partir de huit combinaisons de la détention ou l'assouplissement des hypothèses de la plus simple qui détient toutes les hypothèses à la plus générale qui détend tous. Les modèles dérivés du cadre proposé nous permettent d'enquêter sur la plausibilité biologique des trois hypothèses simplificatrices sur des données réelles ainsi que de trouver le meilleur modèle qui est aligné avec les caractéristiques sous-jacentes des jeux de données. Nos expériences montrent que, dans aucun des jeux de données réelles, tenant les trois hypothèses mentionnées est réaliste. Cela signifie en utilisant des modèles simples qui détiennent ces hypothèses peuvent être trompeuses et les résultats de l'estimation inexacte des paramètres. Le deuxième objectif est de développer un modèle mécaniste de codon généralisée qui détend les trois hypothèses simplificatrices, tandis que d'informatique efficace, en utilisant une opération de matrice appelée produit de Kronecker. Nos expériences montrent que sur un jeux de données choisis au hasard, le modèle proposé de codon mécaniste généralisée surpasse autre modèle de codon par rapport à AICc métrique dans environ la moitié des ensembles de données. En outre, je montre à travers plusieurs expériences que le modèle général proposé est biologiquement plausible.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quantifying the spatial configuration of hydraulic conductivity (K) in heterogeneous geological environments is essential for accurate predictions of contaminant transport, but is difficult because of the inherent limitations in resolution and coverage associated with traditional hydrological measurements. To address this issue, we consider crosshole and surface-based electrical resistivity geophysical measurements, collected in time during a saline tracer experiment. We use a Bayesian Markov-chain-Monte-Carlo (McMC) methodology to jointly invert the dynamic resistivity data, together with borehole tracer concentration data, to generate multiple posterior realizations of K that are consistent with all available information. We do this within a coupled inversion framework, whereby the geophysical and hydrological forward models are linked through an uncertain relationship between electrical resistivity and concentration. To minimize computational expense, a facies-based subsurface parameterization is developed. The Bayesian-McMC methodology allows us to explore the potential benefits of including the geophysical data into the inverse problem by examining their effect on our ability to identify fast flowpaths in the subsurface, and their impact on hydrological prediction uncertainty. Using a complex, geostatistically generated, two-dimensional numerical example representative of a fluvial environment, we demonstrate that flow model calibration is improved and prediction error is decreased when the electrical resistivity data are included. The worth of the geophysical data is found to be greatest for long spatial correlation lengths of subsurface heterogeneity with respect to wellbore separation, where flow and transport are largely controlled by highly connected flowpaths.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sustainable resource use is one of the most important environmental issues of our times. It is closely related to discussions on the 'peaking' of various natural resources serving as energy sources, agricultural nutrients, or metals indispensable in high-technology applications. Although the peaking theory remains controversial, it is commonly recognized that a more sustainable use of resources would alleviate negative environmental impacts related to resource use. In this thesis, sustainable resource use is analysed from a practical standpoint, through several different case studies. Four of these case studies relate to resource metabolism in the Canton of Geneva in Switzerland: the aim was to model the evolution of chosen resource stocks and flows in the coming decades. The studied resources were copper (a bulk metal), phosphorus (a vital agricultural nutrient), and wood (a renewable resource). In addition, the case of lithium (a critical metal) was analysed briefly in a qualitative manner and in an electric mobility perspective. In addition to the Geneva case studies, this thesis includes a case study on the sustainability of space life support systems. Space life support systems are systems whose aim is to provide the crew of a spacecraft with the necessary metabolic consumables over the course of a mission. Sustainability was again analysed from a resource use perspective. In this case study, the functioning of two different types of life support systems, ARES and BIORAT, were evaluated and compared; these systems represent, respectively, physico-chemical and biological life support systems. Space life support systems could in fact be used as a kind of 'laboratory of sustainability' given that they represent closed and relatively simple systems compared to complex and open terrestrial systems such as the Canton of Geneva. The chosen analysis method used in the Geneva case studies was dynamic material flow analysis: dynamic material flow models were constructed for the resources copper, phosphorus, and wood. Besides a baseline scenario, various alternative scenarios (notably involving increased recycling) were also examined. In the case of space life support systems, the methodology of material flow analysis was also employed, but as the data available on the dynamic behaviour of the systems was insufficient, only static simulations could be performed. The results of the case studies in the Canton of Geneva show the following: were resource use to follow population growth, resource consumption would be multiplied by nearly 1.2 by 2030 and by 1.5 by 2080. A complete transition to electric mobility would be expected to only slightly (+5%) increase the copper consumption per capita while the lithium demand in cars would increase 350 fold. For example, phosphorus imports could be decreased by recycling sewage sludge or human urine; however, the health and environmental impacts of these options have yet to be studied. Increasing the wood production in the Canton would not significantly decrease the dependence on wood imports as the Canton's production represents only 5% of total consumption. In the comparison of space life support systems ARES and BIORAT, BIORAT outperforms ARES in resource use but not in energy use. However, as the systems are dimensioned very differently, it remains questionable whether they can be compared outright. In conclusion, the use of dynamic material flow analysis can provide useful information for policy makers and strategic decision-making; however, uncertainty in reference data greatly influences the precision of the results. Space life support systems constitute an extreme case of resource-using systems; nevertheless, it is not clear how their example could be of immediate use to terrestrial systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It has been long recognized that highly polymorphic genetic markers can lead to underestimation of divergence between populations when migration is low. Microsatellite loci, which are characterized by extremely high mutation rates, are particularly likely to be affected. Here, we report genetic differentiation estimates in a contact zone between two chromosome races of the common shrew (Sorex araneus), based on 10 autosomal microsatellites, a newly developed Y-chromosome microsatellite, and mitochondrial DNA. These results are compared to previous data on proteins and karyotypes. Estimates of genetic differentiation based on F- and R-statistics are much lower for autosomal microsatellites than for all other genetic markers. We show by simulations that this discrepancy stems mainly from the high mutation rate of microsatellite markers for F-statistics and from deviations from a single-step mutation model for R-statistics. The sex-linked genetic markers show that all gene exchange between races is mediated by females. The absence of male-mediated gene flow most likely results from male hybrid sterility.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A better understanding of the factors that mould ecological community structure is required to accurately predict community composition and to anticipate threats to ecosystems due to global changes. We tested how well stacked climate-based species distribution models (S-SDMs) could predict butterfly communities in a mountain region. It has been suggested that climate is the main force driving butterfly distribution and community structure in mountain environments, and that, as a consequence, climate-based S-SDMs should yield unbiased predictions. In contrast to this expectation, at lower altitudes, climate-based S-SDMs overpredicted butterfly species richness at sites with low plant species richness and underpredicted species richness at sites with high plant species richness. According to two indices of composition accuracy, the Sorensen index and a matching coefficient considering both absences and presences, S-SDMs were more accurate in plant-rich grasslands. Butterflies display strong and often specialised trophic interactions with plants. At lower altitudes, where land use is more intense, considering climate alone without accounting for land use influences on grassland plant richness leads to erroneous predictions of butterfly presences and absences. In contrast, at higher altitudes, where climate is the main force filtering communities, there were fewer differences between observed and predicted butterfly richness. At high altitudes, even if stochastic processes decrease the accuracy of predictions of presence, climate-based S-SDMs are able to better filter out butterfly species that are unable to cope with severe climatic conditions, providing more accurate predictions of absences. Our results suggest that predictions should account for plants in disturbed habitats at lower altitudes but that stochastic processes and heterogeneity at high altitudes may limit prediction success of climate-based S-SDMs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Debris flow hazard modelling at medium (regional) scale has been subject of various studies in recent years. In this study, hazard zonation was carried out, incorporating information about debris flow initiation probability (spatial and temporal), and the delimitation of the potential runout areas. Debris flow hazard zonation was carried out in the area of the Consortium of Mountain Municipalities of Valtellina di Tirano (Central Alps, Italy). The complexity of the phenomenon, the scale of the study, the variability of local conditioning factors, and the lacking data limited the use of process-based models for the runout zone delimitation. Firstly, a map of hazard initiation probabilities was prepared for the study area, based on the available susceptibility zoning information, and the analysis of two sets of aerial photographs for the temporal probability estimation. Afterwards, the hazard initiation map was used as one of the inputs for an empirical GIS-based model (Flow-R), developed at the University of Lausanne (Switzerland). An estimation of the debris flow magnitude was neglected as the main aim of the analysis was to prepare a debris flow hazard map at medium scale. A digital elevation model, with a 10 m resolution, was used together with landuse, geology and debris flow hazard initiation maps as inputs of the Flow-R model to restrict potential areas within each hazard initiation probability class to locations where debris flows are most likely to initiate. Afterwards, runout areas were calculated using multiple flow direction and energy based algorithms. Maximum probable runout zones were calibrated using documented past events and aerial photographs. Finally, two debris flow hazard maps were prepared. The first simply delimits five hazard zones, while the second incorporates the information about debris flow spreading direction probabilities, showing areas more likely to be affected by future debris flows. Limitations of the modelling arise mainly from the models applied and analysis scale, which are neglecting local controlling factors of debris flow hazard. The presented approach of debris flow hazard analysis, associating automatic detection of the source areas and a simple assessment of the debris flow spreading, provided results for consequent hazard and risk studies. However, for the validation and transferability of the parameters and results to other study areas, more testing is needed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development of susceptibility maps for debris flows is of primary importance due to population pressure in hazardous zones. However, hazard assessment by processbased modelling at a regional scale is difficult due to the complex nature of the phenomenon, the variability of local controlling factors, and the uncertainty in modelling parameters. A regional assessment must consider a simplified approach that is not highly parameter dependant and that can provide zonation with minimum data requirements. A distributed empirical model has thus been developed for regional susceptibility assessments using essentially a digital elevation model (DEM). The model is called Flow-R for Flow path assessment of gravitational hazards at a Regional scale (available free of charge under www.flow-r.org) and has been successfully applied to different case studies in various countries with variable data quality. It provides a substantial basis for a preliminary susceptibility assessment at a regional scale. The model was also found relevant to assess other natural hazards such as rockfall, snow avalanches and floods. The model allows for automatic source area delineation, given user criteria, and for the assessment of the propagation extent based on various spreading algorithms and simple frictional laws.We developed a new spreading algorithm, an improved version of Holmgren's direction algorithm, that is less sensitive to small variations of the DEM and that is avoiding over-channelization, and so produces more realistic extents. The choices of the datasets and the algorithms are open to the user, which makes it compliant for various applications and dataset availability. Amongst the possible datasets, the DEM is the only one that is really needed for both the source area delineation and the propagation assessment; its quality is of major importance for the results accuracy. We consider a 10m DEM resolution as a good compromise between processing time and quality of results. However, valuable results have still been obtained on the basis of lower quality DEMs with 25m resolution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Due to the existence of free software and pedagogical guides, the use of data envelopment analysis (DEA) has been further democratized in recent years. Nowadays, it is quite usual for practitioners and decision makers with no or little knowledge in operational research to run themselves their own efficiency analysis. Within DEA, several alternative models allow for an environment adjustment. Five alternative models, each of them easily accessible to and achievable by practitioners and decision makers, are performed using the empirical case of the 90 primary schools of the State of Geneva, Switzerland. As the State of Geneva practices an upstream positive discrimination policy towards schools, this empirical case is particularly appropriate for an environment adjustment. The alternative of the majority of DEA models deliver divergent results. It is a matter of concern for applied researchers and a matter of confusion for practitioners and decision makers. From a political standpoint, these diverging results could lead to potentially opposite decisions. Grâce à l'existence de logiciels en libre accès et de guides pédagogiques, la méthode data envelopment analysis (DEA) s'est démocratisée ces dernières années. Aujourd'hui, il n'est pas rare que les décideurs avec peu ou pas de connaissances en recherche opérationnelle réalisent eux-mêmes leur propre analyse d'efficience. A l'intérieur de la méthode DEA, plusieurs modèles permettent de tenir compte des conditions plus ou moins favorables de l'environnement. Cinq de ces modèles, facilement accessibles et applicables par les décideurs, sont utilisés pour mesurer l'efficience des 90 écoles primaires du canton de Genève, Suisse. Le canton de Genève pratiquant une politique de discrimination positive envers les écoles défavorisées, ce cas pratique est particulièrement adapté pour un ajustement à l'environnement. La majorité des modèles DEA génèrent des résultats divergents. Ce constat est préoccupant pour les chercheurs appliqués et perturbant pour les décideurs. D'un point de vue politique, ces résultats divergents conduisent à des prises de décision différentes selon le modèle sur lequel elles sont fondées.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Debris flows are among the most dangerous processes in mountainous areas due to their rapid rate of movement and long runout zone. Sudden and rather unexpected impacts produce not only damages to buildings and infrastructure but also threaten human lives. Medium- to regional-scale susceptibility analyses allow the identification of the most endangered areas and suggest where further detailed studies have to be carried out. Since data availability for larger regions is mostly the key limiting factor, empirical models with low data requirements are suitable for first overviews. In this study a susceptibility analysis was carried out for the Barcelonnette Basin, situated in the southern French Alps. By means of a methodology based on empirical rules for source identification and the empirical angle of reach concept for the 2-D runout computation, a worst-case scenario was first modelled. In a second step, scenarios for high, medium and low frequency events were developed. A comparison with the footprints of a few mapped events indicates reasonable results but suggests a high dependency on the quality of the digital elevation model. This fact emphasises the need for a careful interpretation of the results while remaining conscious of the inherent assumptions of the model used and quality of the input data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Due to the existence of free software and pedagogical guides, the use of Data Envelopment Analysis (DEA) has been further democratized in recent years. Nowadays, it is quite usual for practitioners and decision makers with no or little knowledge in operational research to run their own efficiency analysis. Within DEA, several alternative models allow for an environmental adjustment. Four alternative models, each user-friendly and easily accessible to practitioners and decision makers, are performed using empirical data of 90 primary schools in the State of Geneva, Switzerland. Results show that the majority of alternative models deliver divergent results. From a political and a managerial standpoint, these diverging results could lead to potentially ineffective decisions. As no consensus emerges on the best model to use, practitioners and decision makers may be tempted to select the model that is right for them, in other words, the model that best reflects their own preferences. Further studies should investigate how an appropriate multi-criteria decision analysis method could help decision makers to select the right model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Debris flow susceptibility mapping at a regional scale has been the subject of various studies. The complexity of the phenomenon and the variability of local controlling factors limit the use of process-based models for a first assessment. GISbased approaches associating an automatic detection of the source areas and a simple assessment of the debris flow spreading may provide a substantial basis for a preliminary susceptibility assessment at the regional scale. The use of a digital elevation model, with a 10 m resolution, for the Canton de Vaud territory (Switzerland), a lithological map and a land use map, has allowed automatic identification of the potential source areas. The spreading estimates are based on basic probabilistic and energy calculations that allow to define the maximal runout distance of a debris flow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present and apply a new three-dimensional model for the prediction of canopy-flow and turbulence dynamics in open-channel flow. The approach uses a dynamic immersed boundary technique that is coupled in a sequentially staggered manner to a large eddy simulation. Two different biomechanical models are developed depending on whether the vegetation is dominated by bending or tensile forces. For bending plants, a model structured on the Euler-Bernoulli beam equation has been developed, whilst for tensile plants, an N-pendula model has been developed. Validation against flume data shows good agreement and demonstrates that for a given stem density, the models are able to simulate the extraction of energy from the mean flow at the stem-scale which leads to the drag discontinuity and associated mixing layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Empirical modeling of exposure levels has been popular for identifying exposure determinants in occupational hygiene. Traditional data-driven methods used to choose a model on which to base inferences have typically not accounted for the uncertainty linked to the process of selecting the final model. Several new approaches propose making statistical inferences from a set of plausible models rather than from a single model regarded as 'best'. This paper introduces the multimodel averaging approach described in the monograph by Burnham and Anderson. In their approach, a set of plausible models are defined a priori by taking into account the sample size and previous knowledge of variables influent on exposure levels. The Akaike information criterion is then calculated to evaluate the relative support of the data for each model, expressed as Akaike weight, to be interpreted as the probability of the model being the best approximating model given the model set. The model weights can then be used to rank models, quantify the evidence favoring one over another, perform multimodel prediction, estimate the relative influence of the potential predictors and estimate multimodel-averaged effects of determinants. The whole approach is illustrated with the analysis of a data set of 1500 volatile organic compound exposure levels collected by the Institute for work and health (Lausanne, Switzerland) over 20 years, each concentration having been divided by the relevant Swiss occupational exposure limit and log-transformed before analysis. Multimodel inference represents a promising procedure for modeling exposure levels that incorporates the notion that several models can be supported by the data and permits to evaluate to a certain extent model selection uncertainty, which is seldom mentioned in current practice.