221 resultados para Cultures (Biology)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rotation-mediated aggregate cultures of foetal rat liver cells were prepared and grown in a chemically defined medium. Their capacity for cellular organisation and maturation was studied over a culture period of 3 wk by using both morphologic and biochemical criteria. It was found that within each aggregate, distinct liver cell types were present and attained their normal, differentiated phenotype. Parenchymal cells formed small acini with a central lumen. Within the first 2 wk in culture, albumin and ferritin mRNA levels were maintained, while the alpha-fetoprotein mRNA levels decreased, and tyrosine aminotransferase (TAT) gene expression increased. No significant response to glucocorticoids was observed in early cultures, whereas after 3 wk a marked increase in TAT mRNA levels was elicited by dexamethasone and glucagon (additive stimulatory effects). The results show that foetal rat liver cells cultured in a chemically defined medium are able to rearrange themselves into histotypic structures, and display a developmental pattern of gene expression comparable to that of perinatal rat liver in vivo. This culture system offers therefore a useful model to study the development and function of liver cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: In vitro aggregating brain cell cultures containing all types of brain cells have been shown to be useful for neurotoxicological investigations. The cultures are used for the detection of nervous system-specific effects of compounds by measuring multiple endpoints, including changes in enzyme activities. Concentration-dependent neurotoxicity is determined at several time points. METHODS: A Markov model was set up to describe the dynamics of brain cell populations exposed to potentially neurotoxic compounds. Brain cells were assumed to be either in a healthy or stressed state, with only stressed cells being susceptible to cell death. Cells may have switched between these states or died with concentration-dependent transition rates. Since cell numbers were not directly measurable, intracellular lactate dehydrogenase (LDH) activity was used as a surrogate. Assuming that changes in cell numbers are proportional to changes in intracellular LDH activity, stochastic enzyme activity models were derived. Maximum likelihood and least squares regression techniques were applied for estimation of the transition rates. Likelihood ratio tests were performed to test hypotheses about the transition rates. Simulation studies were used to investigate the performance of the transition rate estimators and to analyze the error rates of the likelihood ratio tests. The stochastic time-concentration activity model was applied to intracellular LDH activity measurements after 7 and 14 days of continuous exposure to propofol. The model describes transitions from healthy to stressed cells and from stressed cells to death. RESULTS: The model predicted that propofol would affect stressed cells more than healthy cells. Increasing propofol concentration from 10 to 100 μM reduced the mean waiting time for transition to the stressed state by 50%, from 14 to 7 days, whereas the mean duration to cellular death reduced more dramatically from 2.7 days to 6.5 hours. CONCLUSION: The proposed stochastic modeling approach can be used to discriminate between different biological hypotheses regarding the effect of a compound on the transition rates. The effects of different compounds on the transition rate estimates can be quantitatively compared. Data can be extrapolated at late measurement time points to investigate whether costs and time-consuming long-term experiments could possibly be eliminated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Counts performed on dissociated cell cultures of E10 chick embryo dorsal root ganglia (DRG) showed after 4-6 days of culture a pronounced decline of the neuronal population in neuron-enriched cultures and a net gain in the number of ganglion cells in mixed DRG cell cultures (containing both neurons and nonneuronal cells). In the latter case, the increase in the number of neurons was found to depend on NGF and to average 119% in defined medium or 129% in horse serum-supplemented medium after 6 days of culture. The lack of [3H]thymidine incorporation into the neuronal population indicated that the newly formed ganglion cells were not generated by proliferation. On the contrary, the differentiation of postmitotic neuroblasts present in the nonneuronal cell compartment was supported by sequential microphotographs of selected fields taken every hour for 48-55 hr after 3 days of culture. Apparently nonneuronal flat dark cells exhibited morphological changes and gradually evolved into neuronal ovoid and refringent cell bodies with expanding neurites. The ultrastructural organization of these evolving cells corresponded to that of primitive or intermediate neuroblasts. The neuronal nature of these rounding up cell bodies was indeed confirmed by the progressive expression of various neuronal cell markers (150 and 200-kDa neurofilament triplets, neuron specific enolase, and D2/N-CAM). Besides a constant lack of immunoreactivity for tyrosine hydroxylase, somatostatin, parvalbumin, and calbindin-D 28K and a lack of cytoenzymatic activity for carbonic anhydrase, all the newly produced neurons expressed three main phenotypic characteristics: a small cell body, a strong immunoreactivity to MAG, and substance P. Hence, ganglion cells newly differentiated in culture would meet characteristics ascribed to small B sensory neurons and more specifically to a subpopulation of ganglion cells containing substance P-immunoreactive material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Serum-free aggregating brain cell cultures are free-floating three-dimensional primary cell cultures able to reconstitute spontaneously a histotypic brain architecture to reproduce critical steps of brain development and to reach a high level of structural and functional maturity. This culture system offers, therefore, a unique model for neurotoxicity testing both during the development and at advanced cellular differentiation, and the high number of aggregates available combined with the excellent reproducibility of the cultures facilitates routine test procedures. This chapter presents a detailed description of the preparation, maintenance, and use of these cultures for neurotoxicity studies and a comparison of the developmental characteristics between cultures derived from the telencephalon and cultures derived from the whole brain. For culture preparation, mechanically dissociated embryonic brain tissue is used. The initial cell suspension, composed of neural stem cells, neural progenitor cells, immature postmitotic neurons, glioblasts, and microglial cells, is kept in a serum-free, chemically defined medium under continuous gyratory agitation. Spherical aggregates form spontaneously and are maintained in suspension culture for several weeks. Within the aggregates, the cells rearrange and mature, reproducing critical morphogenic events, such as migration, proliferation, differentiation, synaptogenesis, and myelination. For experimentation, replicate cultures are prepared by the randomization of aggregates from several original flasks. The high yield and reproducibility of the cultures enable multiparametric endpoint analyses, including "omics" approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence concerning the presence or absence of common neuronglia lineages in the postnatal mammalian central nervous system is still a matter of speculation. We address this problem using optic nerve explants, which show an extremely long survival in culture. Morphological, immunocytochemical and immunochemical methods were applied. The results obtained from in vitro tissue were compared with optic nerves (ONs) and whole-brain samples from animals of different ages. Newborn rat ONs represented the starting material of our tissue culture; they are composed of unmyelinated axons, astrocytes and progenitor cells but devoid of neuronal cell bodies. At this age, Western blots of ONs were positively stained by neurofilament and synapsin I specific antibodies. These bands increased in intensity during postnatal in situ development. In explant cultures, the glia cells reach a stage of functional differentiation and they maintain, together with undifferentiated cells, a complex histotypic organization. After 6 days in vitro, neurofilaments and synapsin I could not be detected on immunoblots, indicating that 1) axonal degeneration was completed, and 2) neuronal somata were absent at the time. Surprisingly, after about 4-5 weeks in culture, a new cell type appeared, which showed characteristics typical of neurons. After 406 days in vitro, neurofilaments and synapsin I were unequivocally detectable on Western blots. Furthermore, both immunocytochemical staining and light and electron microscopic examinations corroborated the presence of this earlier-observed cell type. These in vitro results clearly show the high developmental plasticity of ON progenitor cells, even late in development. The existence of a common neuron-glia precursor, which never gives rise to neurons in situ, is suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serum-free aggregating cell cultures of fetal rat telencephalon were examined by a combined biochemical and double-labeling immunocytochemical study for the developmental expression of glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS). It was found that these two astroglial markers are co-expressed at different developmental stages in vitro. During the phase of cellular maturation (i.e. between days 14 and 34), GFAP levels and GS activity increase rapidly and in parallel. At the same time, the number of immunoreactive cells increase while the long and thick processes staining in early cultures gradually disappear. The present results demonstrate that in this particular cell culture system only one type of astrocytes develops which expresses both GFAP and GS and which attains a relatively high degree of maturation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous work has shown that aggregate cultures prepared from fetal rat telencephalon and grown in a chemically defined medium offer a useful model to study developmental processes such as myelin synthesis. Since compact myelin is formed in these cultures, we investigated the possibility to use this culture system to study demyelinating mechanisms. In particular, we examined the effect of a monoclonal antibody (8-18C5) directed against the myelin/oligodendrocyte glycoprotein (MOG). We found that addition of anti-MOG antibodies and complement to aggregate cultures led to a highly significant decrease in myelin basic protein (MBP) content and 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) specific activity. These results indicate that, in our culture system, anti-MOG antibodies have a strong demyelinating effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rotation-mediated aggregating brain cell cultures at two different maturational stages (DIV 11 and DIV 20) were subjected for 1 or 2 hours to ischaemic conditions by transient immobilization (arrest of media circulation). During recovery, cell damage was evaluated by measuring changes in cell type-specific enzyme activities and total protein content. It was found that in immature cultures (DIV 11), immobilization for 1 or 2 hours did not affect the parameters measured. By contrast, at DIV 20, ischaemic conditions for 1 hour caused a pronounced decrease in the activities of glutamic acid decarboxylase and choline acetyltransferase. A significant decrease in these neuron-specific enzyme activities was found at post-ischaemic days 1-14, indicating immediate and irreversible neuronal damage. The activity of the astrocyte-specific enzyme, glutamine synthetase, was significantly increased at 4 days post-treatment; equal to control values at 6 days; and significantly decreased at 14 days after the ischaemic insult. Immobilization of DIV 20 cultures for 2 hours caused a drastic reduction in all the parameters measured at post-ischaemic day 6. Generally, the ischaemic conditions appeared to be more detrimental to neurons than to astrocytes, and GABAergic neurons were more affected than cholinergic neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Very little is known about early molecular events triggering epithelial cell differentiation. We have examined the possible role of tyrosine phosphorylation in this process, as observed in cultures of primary mouse keratinocytes after exposure to calcium or 12-O-tetradecanoylphorbol-13-acetate (TPA). Immunoblotting with phosphotyrosine-specific antibodies as well as direct phosphoamino acid analysis revealed that induction of tyrosine phosphorylation occurs as a very early and specific event in keratinocyte differentiation. Very little or no induction of tyrosine phosphorylation was observed in a keratinocyte cell line resistant to the differentiating effects of calcium. Treatment of cells with tyrosine kinase inhibitors prevented induction of tyrosine phosphorylation by calcium and TPA and interfered with the differentiative effects of these agents. These results suggest that specific activation of tyrosine kinase(s) may play an important regulatory role in keratinocyte differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Establishing CD8(+) T cell cultures has been empirical and the published methods have been largely individual laboratory based. In this study, we optimized culturing conditions and show that IL-2 concentration is the most critical factor for the success of establishing CD8(+) T cell cultures. High IL-2 concentration encouraged T cells to non-specifically proliferate, express a B cell marker, B220, and undergo apoptosis. These cells also lose typical irregular T cell morphology and are incapable of sustaining long-term cultures. Using tetramer and intracellular cytokine assessments, we further demonstrated that many antigen-specific T cells have been rendered nonfunctional when expanded under high IL-2 concentration. When IL-2 is used in the correct range, B220-mediated cell depletion greatly enhanced the success rate of such T cell cultures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In cerebral ischemic preconditioning (IPC), a first sublethal ischemia increases the resistance of neurons to a subsequent severe ischemia. Despite numerous studies, the mechanisms are not yet fully understood. Our goal is to develop an in vitro model of IPC on hippocampal organotypic slice cultures. Instead of anoxia, we chose to apply varying degrees of hypoxia that allows us various levels of insult graded from mild to severe. Cultures are exposed to combined oxygen and glucose deprivation (OGD) of varying intensities, ranging from mild to severe, assessing both the electrical activity and cell death. IPC was accomplished by exposure to the mildest ischemia condition (10% of O2 for 15 min) 24 h before the severe deprivation (5% of O2 for 30 min). Interestingly, IPC not only prevented delayed ischemic cell death 6 days after insult but also the transient loss of evoked potential response. The major interest and advantage of this system over both the acute slice preparation and primary cell cultures is the ability to simultaneously measure the delayed neuronal damage and neuronal function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Objectives: This review will briefly present the epidemiology and risk factors of gout, with a focus on recent advances. Methods: Key papers for inclusion were identified by a PubMed search, and articles were selected according to their relevance for the topic, according to authors' judgment. Results and conclusions: Gout therapy has remained very much unchanged for the last 50 years, but recently we have seen the approval of another gout treatment: the xanthine oxidase inhibitor febuxostat, and several new drugs are now in the late stages of clinical testing. Together with our enhanced level of understanding of the pathophysiology of the inflammatory process involved, we are entering a new era for the treatment of gout.