20 resultados para Cardiac Rehabilitation
Resumo:
The voltage-gated cardiac potassium channel hERG1 (human ether-à-gogo-related gene 1) plays a key role in the repolarization phase of the cardiac action potential (AP). Mutations in its gene, KCNH2, can lead to defects in the biosynthesis and maturation of the channel, resulting in congenital long QT syndrome (LQTS). To identify the molecular mechanisms regulating the density of hERG1 channels at the plasma membrane, we investigated channel ubiquitylation by ubiquitin ligase Nedd4-2, a post-translational regulatory mechanism previously linked to other ion channels. We found that whole-cell hERG1 currents recorded in HEK293 cells were decreased upon neural precursor cell expressed developmentally down-regulated 4-2 (Nedd4-2) co-expression. The amount of hERG1 channels in total HEK293 lysates and at the cell surface, as assessed by Western blot and biotinylation assays, respectively, were concomitantly decreased. Nedd4-2 and hERG1 interact via a PY motif located in the C-terminus of hERG1. Finally, we determined that Nedd4-2 mediates ubiquitylation of hERG1 and that deletion of this motif affects Nedd4-2-dependent regulation. These results suggest that ubiquitylation of the hERG1 protein by Nedd4-2, and its subsequent down-regulation, could represent an important mechanism for modulation of the duration of the human cardiac action potential.
Resumo:
FGF-2 has been implicated in the cardiac response to hypertrophic stimuli. Angiotensin II (Ang II) contributes to maintain elevated blood pressure in hypertensive individuals and exerts direct trophic effects on cardiac cells. However, the role of FGF-2 in Ang II-induced cardiac hypertrophy has not been established. Therefore, mice deficient in FGF-2 expression were studied using a model of Ang II-dependent hypertension and cardiac hypertrophy. Echocardiographic measurements show the presence of dilated cardiomyopathy in normotensive mice lacking FGF-2. Moreover, hypertensive mice without FGF-2 developed no compensatory cardiac hypertrophy. In wild-type mice, hypertrophy was associated with a stimulation of the c-Jun N-terminal kinase, the extracellular signal regulated kinase, and the p38 kinase pathways. In contrast, mitogen-activated protein kinase (MAPK) activation was markedly attenuated in FGF-2-deficient mice. In vitro, FGF-2 of fibroblast origin was demonstrated to be essential in the paracrine stimulation of MAPK activation in cardiomyocytes. Indeed, fibroblasts lacking FGF-2 expression have a defective capacity for releasing growth factors to induce hypertrophic responses in cardiomyocytes. Therefore, these results identify the cardiac fibroblast population as a primary integrator of hypertrophic stimuli in the heart, and suggest that FGF-2 is a crucial mediator of cardiac hypertrophy via autocrine/paracrine actions on cardiac cells.
Resumo:
Forensic pathologists often refer to the cardioinhibitory reflex cardiac arrest (CiRCA) following short neck trauma as a mechanism of death. We sought via a systematic review of the literature to identify circumstances under which carotid bifurcation stimulation could lead to death. Two independent reviewers selected case studies or reports from Medline, ISI Web of Knowledge, and Embase. Circumstances and contributory factors were extracted for each case. From the available data, authors independently assessed whether CiRCA was highly probable (no alternative explanation possible), probable (alternative explanation possible), or unlikely (alternative explanation highly probable). A narrative approach was used to define circumstances in which CiRCA remained possible. From the 48 published cases evoking CiRCA as a possible cause of death between 1881 and 2009, 28 were most likely to result of other mechanism of death (i.e., cerebral hypoxia due to carotid compression, mechanical asphyxia, myocardial infarction). CiRCA remained possible for 20 cases (including five based on anecdotal evidence only) with only one case with no alternative explanation other than CiRCA. Our findings support the presumption that reflex cardiac arrhythmia due to carotid bifurcation stimulation cannot provoke death alone. Actual state of knowledge suggests CiRCA might be contributory to death in the presence of drug abuse and/or cardiac pathology, often associated with physical and/or mental excitation.
Resumo:
BACKGROUND: To date, there is no quality assurance program that correlates patient outcome to perfusion service provided during cardiopulmonary bypass (CPB). A score was devised, incorporating objective parameters that would reflect the likelihood to influence patient outcome. The purpose was to create a new method for evaluating the quality of care the perfusionist provides during CPB procedures and to deduce whether it predicts patient morbidity and mortality. METHODS: We analysed 295 consecutive elective patients. We chose 10 parameters: fluid balance, blood transfused, Hct, ACT, PaO2, PaCO2, pH, BE, potassium and CPB time. Distribution analysis was performed using the Shapiro-Wilcoxon test. This made up the PerfSCORE and we tried to find a correlation to mortality rate, patient stay in the ICU and length of mechanical ventilation. Univariate analysis (UA) using linear regression was established for each parameter. Statistical significance was established when p < 0.05. Multivariate analysis (MA) was performed with the same parameters. RESULTS: The mean age was 63.8 +/- 12.6 years with 70% males. There were 180 CABG, 88 valves, and 27 combined CABG/valve procedures. The PerfSCORE of 6.6 +/- 2.4 (0-20), mortality of 2.7% (8/295), CPB time 100 +/- 41 min (19-313), ICU stay 52 +/- 62 hrs (7-564) and mechanical ventilation of 10.5 +/- 14.8 hrs (0-564) was calculated. CPB time, fluid balance, PaO2, PerfSCORE and blood transfused were significantly correlated to mortality (UA, p < 0.05). Also, CPB time, blood transfused and PaO2 were parameters predicting mortality (MA, p < 0.01). Only pH was significantly correlated for predicting ICU stay (UA). Ultrafiltration (UF) and CPB time were significantly correlated (UA, p < 0.01) while UF (p < 0.05) was the only parameter predicting mechanical ventilation duration (MA). CONCLUSIONS: CPB time, blood transfused and PaO2 are independent risk factors of mortality. Fluid balance, blood transfusion, PaO2, PerfSCORE and CPB time are independent parameters for predicting morbidity. PerfSCORE is a quality of perfusion measure that objectively quantifies perfusion performance.
Resumo:
OBJECTIVE: This study was designed to analyze the duration of chest tube drainage on pain intensity and distribution after cardiac surgery. METHODS: Two groups of 80 cardiac surgery adult patients, operated on in two different hospitals, by the same group of cardiac surgeons, and with similar postoperative strategies, were compared. However, in one hospital (long drainage group), a conservative policy was adopted with the removal the chest tubes by postoperative day (POD) 2 or 3, while in the second hospital (short drainage group), all the drains were usually removed on POD 1. RESULTS: There was a trend toward less pain in the short drainage group, with a statistically significant difference on POD 2 (P=0.047). There were less patients without pain on POD 3 in the long drainage group (P=0. 01). The areas corresponding to the tract of the pleural tube, namely the epigastric area, the left basis of the thorax, and the left shoulder were more often involved in the long drainage group. There were three pneumonias in each group and no patient required repeated drainage. CONCLUSIONS: A policy of early chest drain ablation limits pain sensation and simplifies nursing care, without increasing the need for repeated pleural puncture. Therefore, a policy of short drainage after cardiac surgery should be recommended.
Resumo:
COPD is associated with some skeletal muscle dysfunction which contributes to a poor exercise tolerance. This dysfunction results from multiple factors: physical inactivity, corticosteroids, smoking, malnutrition, anabolic deficiency, systemic inflammation, hypoxia, oxidative stress. Respiratory rehabilitation is based on exercise training and allows patients with COPD to experience less dyspnoea, and to improve their exercise tolerance and quality of life. Not all patients, however, benefit from rehabilitation. Acknowledging the different factors leading to muscular dysfunction allows one to foresee new avenues to improve efficacy of exercise training in COPD.
Resumo:
Current American Academy of Neurology (AAN) guidelines for outcome prediction in comatose survivors of cardiac arrest (CA) have been validated before the therapeutic hypothermia era (TH). We undertook this study to verify the prognostic value of clinical and electrophysiological variables in the TH setting. A total of 111 consecutive comatose survivors of CA treated with TH were prospectively studied over a 3-year period. Neurological examination, electroencephalography (EEG), and somatosensory evoked potentials (SSEP) were performed immediately after TH, at normothermia and off sedation. Neurological recovery was assessed at 3 to 6 months, using Cerebral Performance Categories (CPC). Three clinical variables, assessed within 72 hours after CA, showed higher false-positive mortality predictions as compared with the AAN guidelines: incomplete brainstem reflexes recovery (4% vs 0%), myoclonus (7% vs 0%), and absent motor response to pain (24% vs 0%). Furthermore, unreactive EEG background was incompatible with good long-term neurological recovery (CPC 1-2) and strongly associated with in-hospital mortality (adjusted odds ratio for death, 15.4; 95% confidence interval, 3.3-71.9). The presence of at least 2 independent predictors out of 4 (incomplete brainstem reflexes, myoclonus, unreactive EEG, and absent cortical SSEP) accurately predicted poor long-term neurological recovery (positive predictive value = 1.00); EEG reactivity significantly improved the prognostication. Our data show that TH may modify outcome prediction after CA, implying that some clinical features should be interpreted with more caution in this setting as compared with the AAN guidelines. EEG background reactivity is useful in determining the prognosis after CA treated with TH.
Resumo:
INTRODUCTION: In recent decades the treatment of non-specific low back pain has turned to active modalities, some of which were based on cognitive-behavioural principles. Non-randomised studies clearly favour functional multidisciplinary rehabilitation over outpatient physiotherapy. However, systematic reviews and meta-analysis provide contradictory evidence regarding the effects on return to work and functional status. The aim of the present randomised study was to compare long-term functional and work status after 3-week functional multidisciplinary rehabilitation or 18 supervised outpatient physiotherapy sessions. METHODS: 109 patients with non-specific low back pain were randomised to either a 3-week functional multidisciplinary rehabilitation programme, including physical and ergonomic training, psychological pain management, back school and information, or 18 sessions of active outpatient physiotherapy over 9 weeks. Primary outcomes were functional disability (Oswestry) and work status. Secondary outcomes were lifting capacity (Spinal Function Sort and PILE test), lumbar range-of-motion (modified-modified Schöber and fingertip-to-floor tests), trunk muscle endurance (Shirado and Biering-Sörensen tests) and aerobic capacity (modified Bruce test). RESULTS: Oswestry disability index was improved to a significantly greater extent after functional multidisciplinary rehabilitation compared to outpatient physiotherapy at follow-up of 9 weeks (P = 0.012), 9 months (P = 0.023) and 12 months (P = 0.011). Work status was significantly improved after functional multidisciplinary rehabilitation only (P = 0.012), resulting in a significant difference compared to outpatient physiotherapy at 12 months' follow-up (P = 0.012). Secondary outcome results were more contrasted. CONCLUSIONS: Functional multidisciplinary rehabilitation was better than outpatient physiotherapy in improving functional and work status. From an economic point of view, these results should be backed up by a cost-effectiveness study.
Resumo:
Cardiovascular diseases and in particular heart failure are major causes of morbidity and mortality in the Western world. Recently, the notion of promoting cardiac regeneration as a means to replace lost cardiomyocytes in the damaged heart has engendered considerable research interest. These studies envisage the utilization of both endogenous and exogenous cellular populations, which undergo highly specialized cell fate transitions to promote cardiomyocyte replenishment. Such transitions are under the control of regenerative gene regulatory networks, which are enacted by the integrated execution of specific transcriptional programs. In this context, it is emerging that the non-coding portion of the genome is dynamically transcribed generating thousands of regulatory small and long non-coding RNAs, which are central orchestrators of these networks. In this review, we discuss more particularly the biological roles of two classes of regulatory non-coding RNAs, i.e. microRNAs and long non-coding RNAs, with a particular emphasis on their known and putative roles in cardiac homeostasis and regeneration. Indeed, manipulating non-coding RNA-mediated regulatory networks could provide keys to unlock the dormant potential of the mammalian heart to regenerate. This should ultimately improve the effectiveness of current regenerative strategies and discover new avenues for repair. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Resumo:
In response to stress or injury the heart undergoes an adverse remodeling process associated with cardiomyocyte hypertrophy and fibrosis. Transformation of cardiac fibroblasts to myofibroblasts is a crucial event initiating the fibrotic process. Cardiac myofibroblasts invade the myocardium and secrete excess amounts of extracellular matrix proteins, which cause myocardial stiffening, cardiac dysfunctions and progression to heart failure. While several studies indicate that the small GTPase RhoA can promote profibrotic responses, the exchange factors that modulate its activity in cardiac fibroblasts are yet to be identified. In the present study, we show that AKAP-Lbc, an A-kinase anchoring protein (AKAP) with an intrinsic Rho-specific guanine nucleotide exchange factor (GEF) activity, is critical for activating RhoA and transducing profibrotic signals downstream of type I angiotensin II receptors (AT1Rs) in cardiac fibroblasts. In particular, our results indicate that suppression of AKAP-Lbc expression by infecting adult rat ventricular fibroblasts with lentiviruses encoding AKAP-Lbc specific short hairpin (sh) RNAs strongly reduces the ability of angiotensin II to promote RhoA activation, differentiation of cardiac fibroblasts to myofibroblasts, collagen deposition as well as myofibroblast migration. Interestingly, AT1Rs promote AKAP-Lbc activation via a pathway that requires the α subunit of the heterotrimeric G protein G12. These findings identify AKAP-Lbc as a key Rho-guanine nucleotide exchange factor modulating profibrotic responses in cardiac fibroblasts.
Resumo:
BACKGROUND Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an arrhythmogenic disease for which electrophysiological studies (EPS) have shown to be of limited value.OBJECTIVE This study presents a CPVT family in which marked postpacing repolarization abnormalities during EPS were the only consistent phenotypic manifestation of ryanodine receptor (RyR2) mutation carriers.METHODS The study was prompted by the observation of transient marked QT prolongation preceding initiation of ventricular fibrillation during atrial fibrillation in a boy with a family history of sudden cardiac death (SCD). Family members underwent exercise and pharmacologic electrocardiographic testing with epinephrine, adenosine, and flecainide. Noninvasive clinical test results were normal in 10 patients evaluated, except for both epinephrine- and exercise-induced ventricular arrhythmias in 1. EPS included bursts of ventricular pacing and programmed ventricular extrastimulation reproducing short-long sequences. Genetic screening involved direct sequencing of genes involved in long QT syndrome as well as RyR2.RESULTS Six patients demonstrated a marked increase in QT interval only in the first beat after cessation of ventricular pacing and/or extrastimulation. All 6 patients were found to have a heterozygous missense mutation (M4109R) in RyR2. Two of them, presenting with aborted SCD, also had a second missense mutation (I406T- RyR2). Four family members without RyR2 mutations did not display prominent postpacing QT changes.CONCLUSION M4109R- RyR2 is associated with a high incidence of SCD. The contribution of I406T to the clinical phenotype is unclear. In contrast to exercise testing, marked postpacing repolarization changes in a single beat accurately predicted carriers of M4109R- RyR2 in this family.
Resumo:
Postoperative delirium after cardiac surgery is associated with increased morbidity and mortality as well as prolonged stay in both the intensive care unit and the hospital. The authors sought to identify modifiable risk factors associated with the development of postoperative delirium in elderly patients after elective cardiac surgery in order to be able to design follow-up studies aimed at the prevention of delirium by optimizing perioperative management. A post hoc analysis of data from patients enrolled in a randomized controlled trial was performed. A single university hospital. One hundred thirteen patients aged 65 or older undergoing elective cardiac surgery with cardiopulmonary bypass. None. MEASUREMENTS AND MAINS RESULTS: Screening for delirium was performed using the Confusion Assessment Method (CAM) on the first 6 postoperative days. A multivariable logistic regression model was developed to identify significant risk factors and to control for confounders. Delirium developed in 35 of 113 patients (30%). The multivariable model showed the maximum value of C-reactive protein measured postoperatively, the dose of fentanyl per kilogram of body weight administered intraoperatively, and the duration of mechanical ventilation to be independently associated with delirium. In this post hoc analysis, larger doses of fentanyl administered intraoperatively and longer duration of mechanical ventilation were associated with postoperative delirium in the elderly after cardiac surgery. Prospective randomized trials should be performed to test the hypotheses that a reduced dose of fentanyl administered intraoperatively, the use of a different opioid, or weaning protocols aimed at early extubation prevent delirium in these patients.
Resumo:
In response to stress or injury the heart undergoes a pathological remodeling process, associated with hypertrophy, cardiomyocyte death and fibrosis, that ultimately causes cardiac dysfunction and heart failure. It has become increasingly clear that signaling events associated with these pathological cardiac remodeling events are regulated by scaffolding and anchoring proteins, which allow coordination of pathological signals in space and time. A-kinase anchoring proteins (AKAPs) constitute a family of functionally related proteins that organize multiprotein signaling complexes that tether the cAMP-dependent protein kinase (PKA) as well as other signaling enzymes to ensure integration and processing of multiple signaling pathways. This review will discuss the role of AKAPs in the cardiac response to stress. Particular emphasis will be given to the adaptative process associated with cardiac hypoxia as well as the remodeling events linked to cardiac hypertrophy and heart failure. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Resumo:
OBJECTIVES: The goal of this study was to determine whether subclinical thyroid dysfunction was associated with incident heart failure (HF) and echocardiogram abnormalities. BACKGROUND: Subclinical hypothyroidism and hyperthyroidism have been associated with cardiac dysfunction. However, long-term data on the risk of HF are limited. METHODS: We studied 3,044 adults>or=65 years of age who initially were free of HF in the Cardiovascular Health Study. We compared adjudicated HF events over a mean 12-year follow-up and changes in cardiac function over the course of 5 years among euthyroid participants, those with subclinical hypothyroidism (subdivided by thyroid-stimulating hormone [TSH] levels: 4.5 to 9.9, >or=10.0 mU/l), and those with subclinical hyperthyroidism. RESULTS: Over the course of 12 years, 736 participants developed HF events. Participants with TSH>or=10.0 mU/l had a greater incidence of HF compared with euthyroid participants (41.7 vs. 22.9 per 1,000 person years, p=0.01; adjusted hazard ratio: 1.88; 95% confidence interval: 1.05 to 3.34). Baseline peak E velocity, which is an echocardiographic measurement of diastolic function associated with incident HF in the CHS cohort, was greater in those patients with TSH>or=10.0 mU/l compared with euthyroid participants (0.80 m/s vs. 0.72 m/s, p=0.002). Over the course of 5 years, left ventricular mass increased among those with TSH>or=10.0 mU/l, but other echocardiographic measurements were unchanged. Those patients with TSH 4.5 to 9.9 mU/l or with subclinical hyperthyroidism had no increase in risk of HF. CONCLUSIONS: Compared with euthyroid older adults, those adults with TSH>or=10.0 mU/l have a moderately increased risk of HF and alterations in cardiac function but not older adults with TSH<10.0 mU/l. Clinical trials should assess whether the risk of HF might be ameliorated by thyroxine replacement in individuals with TSH>or=10.0 mU/l.