48 resultados para CCR7
Resumo:
OBJECTIVE: To determine in chimpanzees if candidate HIV-1 subunit protein vaccines were capable of eliciting long-lasting T-cell memory responses in the absence of viral infection, and to determine the specific characteristics of these responses. DESIGN: A longitudinal study of cell-mediated immune responses induced in three chimpanzees following immunization with subunit envelope glycoproteins of either HIV-1 or herpes simplex virus (HSV)-2. Following these pre-clinical observations, four human volunteers who had been immunized 7 years previously with the same HIV-1 vaccine candidate donated blood for assessment of immune responses. METHODS: Responses were monitored by protein and peptide based ELISpot assays, lymphocyte proliferation, and intracellular cytokine staining. Humoral responses were assessed by enzyme-linked immunosorbent assay and virus neutralization assays. RESULTS: Although antigen (Ag)-specific CD4 T-cell responses persisted for at least 5 years in chimpanzees, CD8 T-cell responses were discordant and declined within 2 years. Detailed cellular analyses revealed that strong Th1 in addition to Th2 type responses were induced by AS2/gp120 and persisted, whereas CD8 T-cell memory declined in peripheral blood. The specificity of both Th and cytotoxic T-lymphocyte responses revealed that the majority of responses were directed to conserved epitopes. The remarkable persistence of Ag-specific CD4 T-cell memory was characterized as a population of the CD45RA-CD62L-CCR7- "effector phenotype" producing the cytokines IFNgamma, IL-2 and IL-4 upon epitope-specific recognition. Importantly, results in chimpanzees were confirmed in peripheral blood of one of four human volunteers studied more than 7 years after immunization. CONCLUSION: These studies demonstrate that epitope-specific Th1 and Th2 cytokine-dependent Th responses can be induced and maintained for longer than 5 years by immunization with subunit proteins of HIV-1.
Resumo:
The chemokine receptor CCR7 is critical for the recirculation of naive T cells. It is required for T cell entry into secondary lymphoid organs (SLO) and for T cell motility and retention within these organs. How CCR7 activity is regulated during these processes in vivo is poorly understood. Here we show strong modulation of CCR7 surface expression and occupancy by the two CCR7 ligands, both in vitro and in vivo. In contrast to blood, T cells in SLO had most surface CCR7 occupied with CCL19, presumably leading to continuous signaling and cell motility. Both ligands triggered CCR7 internalization in vivo as shown in Ccl19(-/-) and plt/plt mice. Importantly, CCR7 occupancy and down-regulation led to strongly impaired chemotactic responses, an effect reversible by CCR7 resensitization. Therefore, during their recirculation, T cells cycle between states of free CCR7 with high ligand sensitivity in blood and occupied CCR7 associated with continual signaling and reduced ligand sensitivity within SLO. We propose that these two states of CCR7 are important to allow the various functions CCR7 plays in T cell recirculation.
Resumo:
To defend the host from malignancies, the immune system can spontaneously raise CD8(+) T-cell responses against tumor antigens. Investigating the functional state of tumor-reactive cytolytic T cells in cancer patients is a key step for understanding the role of these cells in tumor immunosurveillance and for evaluating the potential of immunotherapeutic approaches of vaccination against cancer. In this study we identified a subset of circulating tumor-reactive CD8(+) T lymphocytes, which specifically secreted IFN-gamma after exposition to autologous tumor cell lines in stage IV metastatic melanoma patients. Additional phenotypic characterization using multicolor flow cytometry revealed that a significant fraction of these cells were CD45RA(+)CCR7(-), a phenotype that has been proposed recently to characterize cytolytic effectors potentially able to home into inflamed tissues. In the case of an HLA-A2-expressing patient, the antigen specificity of this population was identified by using HLA-A2/peptide multimers incorporating a tyrosinase-derived peptide. Consistently with their phenotypic characteristics, A2/tyrosinase peptide multimer(+) CD8(+) T cells, isolated by cell sorting, were directly lytic ex vivo and able to specifically recognize tyrosinase-expressing tumor cells. Overall, these results provide the first evidence that a proportion of melanoma patients have circulating tumor-reactive T cells, which are lytic effectors cells.
Resumo:
Airway epithelial cells were shown to drive the differentiation of monocytes into dendritic cells (DCs) with a suppressive phenotype. In this study, we investigated the impact of virus-induced inflammatory mediator production on the development of DCs. Monocyte differentiation into functional DCs, as reflected by the expression of CD11c, CD123, BDCA-4, and DC-SIGN and the capacity to activate T cells, was similar for respiratory syncytial virus (RSV)-infected and mock-infected BEAS-2B and A549 cells. RSV-conditioned culture media resulted in a partially mature DC phenotype, but failed to up-regulate CD80, CD83, CD86, and CCR7, and failed to release proinflammatory mediators upon Toll-like receptor (TLR) triggering. Nevertheless, these DCs were able to maintain an antiviral response by the release of Type I IFN. Collectively, these data indicate that the airway epithelium maintains an important suppressive DC phenotype under the inflammatory conditions induced by infection with RSV.
Resumo:
RESUME Nous n'avons pas de connaissance précise des facteurs à l'origine de l'hétérogénéité phénotypique des cellules T CD4 mémoires. Une troisième population phénotypique des cellules T CD4 mémoires, caractérisée par les marqueurs CD45RA+CCR7- a été identifiée dans cette étude. Cette population présente un état de différentiation avancée, comme en témoigne son histoire de réplication, ainsi que sa capacité de prolifération homéostatique. Les réponses des cellules T CD4 mémoires à différentes conditions de persistance et charge antigénique ont trois patterns phénotypiques différents, caractérisés par les marqueurs CD45RA et CCR7. La réponse CD4 mono -phénotypique CD45RA-CCR7+ ou CD45RA- CCR7- est associée à des conditions d'élimination de l'antigène (telle la réponse CD4 tétanos spécifique) ou à des conditions de persistance antigénique et de virémie élevée (telle la réponse HIV chronique ou la primo-infection CMV) respectivement. D'autre part, les réponses T CD4 multi -phénotypiques CD45RA-CCR7+ sont associées à des conditions d'exposition antigénique prolongée et de faible virémie (telles les infections CMV, EBV et HSV ou les infections HIV chez les long term non progressons). La réponse mono -phénotypique CD45RA- CCR7+ est propre aux cellules T CD4 secrétant de IL2, définies également comme centrales mémoires, la réponse CD45RA- CCR7- aux cellules T CD4 secrétant de l'IFNγ et finalement la réponse mufti-phénotypique aux cellules T CD4 secrétant à la fois de l'IL2 et de l' IFNγ. En conclusion, ces résultats témoignent d'une régulation de l'hétérogénéité phénotypique par l'exposition et la charge antigénique. ABSTRACT The factors responsible for the phenotypic heterogeneity of memory CD4 T cells are unclear. In the present study, we have identified a third population of memory CD4 T cells characterized as CD45RA+CCRT that, based on its replication history and the homeostatic proliferative capacity, was at an advanced stage of differentiation. Three different phenotypic patterns of memory CD4 T cell responses were delineated under different conditions of antigen (Ag) persistence and load using CD45RA and CCR7 as markers of memory T cells. Mono-phenotypic CD45RA'CCR7+ or CD45RA'CCR7' CD4 T cell responses were associated with conditions of Ag clearance (tetanus toxoid-specific CD4 T cell response) or Ag persistence and high load (chronic HIV-1 and primary CMV infections), respectively. Multi-phenotypic CD45RA CCR7+, CD45RA'CCRT and CD45RA+CCRT CD4 T cell responses were associated with protracted Ag exposure and low load (chronic CMV, EBV and HSV infections and HIV-1 infection in long-term nonprogressors). The mono-phenotypic CD45RA'CCR7+ response was typical of central memory (TCM) IL-2-secreting CD4 T cells, the mono-phenotypic CD45RA CCRT response of effector memory (TEM) IFN-γ -secreting CD4 T cells and the multi-phenotypic response of both IL-2- and IFN-γ -secreting cells. The present results indicate that the heterogeneity of different Ag-specific CD4 T cell responses is regulated by Ag exposure and Ag load.
Resumo:
CD8 T cells play a key role in mediating protective immunity against selected pathogens after vaccination. Understanding the mechanism of this protection is dependent upon definition of the heterogeneity and complexity of cellular immune responses generated by different vaccines. Here, we identify previously unrecognized subsets of CD8 T cells based upon analysis of gene-expression patterns within single cells and show that they are differentially induced by different vaccines. Three prime-boost vector combinations encoding HIV Env stimulated antigen-specific CD8 T-cell populations of similar magnitude, phenotype, and functionality. Remarkably, however, analysis of single-cell gene-expression profiles enabled discrimination of a majority of central memory (CM) and effector memory (EM) CD8 T cells elicited by the three vaccines. Subsets of T cells could be defined based on their expression of Eomes, Cxcr3, and Ccr7, or Klrk1, Klrg1, and Ccr5 in CM and EM cells, respectively. Of CM cells elicited by DNA prime-recombinant adenoviral (rAd) boost vectors, 67% were Eomes(-) Ccr7(+) Cxcr3(-), in contrast to only 7% and 2% stimulated by rAd5-rAd5 or rAd-LCMV, respectively. Of EM cells elicited by DNA-rAd, 74% were Klrk1(-) Klrg1(-)Ccr5(-) compared with only 26% and 20% for rAd5-rAd5 or rAd5-LCMV. Definition by single-cell gene profiling of specific CM and EM CD8 T-cell subsets that are differentially induced by different gene-based vaccines will facilitate the design and evaluation of vaccines, as well as enable our understanding of mechanisms of protective immunity.
Resumo:
BACKGROUND: Immunotherapy offers a promising novel approach for the treatment of cancer and both adoptive T-cell transfer and immune modulation lead to regression of advanced melanoma. However, the potential synergy between these two strategies remains unclear. METHODS: We investigated in 12 patients with advanced stage IV melanoma the effect of multiple MART-1 analog peptide vaccinations with (n = 6) or without (n = 6) IMP321 (LAG-3Ig fusion protein) as an adjuvant in combination with lymphodepleting chemotherapy and adoptive transfer of autologous PBMCs at day (D) 0 (Trial registration No: NCT00324623). All patients were selected on the basis of ex vivo detectable MART-1-specific CD8 T-cell responses and immunized at D0, 8, 15, 22, 28, 52, and 74 post-reinfusion. RESULTS: After immunization, a significant expansion of MART-1-specific CD8 T cells was measured in 83% (n = 5/6) and 17% (n = 1/6) of patients from the IMP321 and control groups, respectively (P < 0.02). Compared to the control group, the mean fold increase of MART-1-specific CD8 T cells in the IMP321 group was respectively >2-, >4- and >6-fold higher at D15, D30 and D60 (P < 0.02). Long-lasting MART-1-specific CD8 T-cell responses were significantly associated with IMP321 (P < 0.02). At the peak of the response, MART-1-specific CD8 T cells contained higher proportions of effector (CCR7⁻ CD45RA⁺/⁻) cells in the IMP321 group (P < 0.02) and showed no sign of exhaustion (i.e. were mostly PD1⁻CD160⁻TIM3⁻LAG3⁻2B4⁺/⁻). Moreover, IMP321 was associated with a significantly reduced expansion of regulatory T cells (P < 0.04); consistently, we observed a negative correlation between the relative expansion of MART-1-specific CD8 T cells and of regulatory T cells. Finally, although there were no confirmed responses as per RECIST criteria, a transient, 30-day partial response was observed in a patient from the IMP321 group. CONCLUSIONS: Vaccination with IMP321 as an adjuvant in combination with lymphodepleting chemotherapy and adoptive transfer of autologous PBMCs induced more robust and durable cellular antitumor immune responses, supporting further development of IMP321 as an adjuvant for future immunotherapeutic strategies.
Resumo:
Interleukin 7 is essential for the survival of naive T lymphocytes. Despite its importance, its cellular source in the periphery remains poorly defined. Here we report a critical function for lymph node access in T cell homeostasis and identify T zone fibroblastic reticular cells in these organs as the main source of interleukin 7. In vitro, T zone fibroblastic reticular cells were able to prevent the death of naive T lymphocytes but not of B lymphocytes by secreting interleukin 7 and the CCR7 ligand CCL19. Using gene-targeted mice, we demonstrate a nonredundant function for CCL19 in T cell homeostasis. Our data suggest that lymph nodes and T zone fibroblastic reticular cells have a key function in naive CD4(+) and CD8(+) T cell homeostasis by providing a limited reservoir of survival factors.
Resumo:
Background: Experimental data have suggested that adoptive transfer of CD4+CD25+Foxp3+ regulatory T cells (Tregs), capable of controlling immune responses to specifi c auto- or alloantigens, could be used as a therapeutic strategy to promote specifi c tolerance in T-cell mediated diseases and in organ transplantation (Tx). However, before advocating the application of immunotherapy with Tregs in Tx, we need to improve our understanding of their in vivo homeostasis, traffi cking pattern and effector function in response to alloantigens. Methods : Donor-antigen specifi c murine Tregs were generated and characterized in vitro following our described protocols. Using an adoptive transfer and skin allotransplantation model, we have analyzed the in vivo expansion and homing of fl uorescent-labeled effector T cells (Teff) and Tregs, at different time-points after Tx, using fl ow-cytometry as well as fl uorescence microscopy techniques. Results: Tregs expressed CD62L, CCR7 and CD103 allowing their homing into lymphoid and non-lymphoid tissues (gut, skin) after intravenous injection. While hyporesponsive to TCR stimulation in vitro, transferred Tregs survived, migrated to secondary lymphoid organs and preferentially expanded within the allograft draining lymph nodes. Furthermore, Foxp3+ cells could be detected inside the allograft as early as day 3-5 after Tx. At a much later time-point (day 60 after Tx), graft-infi ltrating Foxp3+ cells were also detectable in tolerant recipients. When transferred alone, CD4+CD25- Teff cells expanded within secondary lymphoid organs and infi ltrated the allograft by day 3-5 after Tx. The co-transfer of Tregs limited the expansion of alloreactive Teff cells as well as their recruitment into the allograft. The promotion of graft survival observed in the presence of Tregs was in part mediated by the inhibition of the production of effector cytokines by CD4+CD25- T cells. Conclusion: Taken together, our results suggest that the suppression of allograft rejection and the induction of Tx tolerance are in part dependant on the alloantigendriven homing and expansion of Tregs. Thus, the appropriate localization of Tregs may be critical for their suppressive function in vivo.
Resumo:
Introduction: Epstein-Barr Virus(EBV) has been repeatedly associatedwith multiple sclerosis (MS). Wehave previously shown that there is ahigh peripheral as well as intrathecalactivation of EBV-, but not cytomegalovirus(CMV)-specific CD8+ Tcells, early in the course of MS,strengthening the link between EBVand MS. However, the trigger of thisincreased EBV-specific CD8+ T cellresponse remains obscure. It could resultfrom a higher EBV viral load. Alternatively,it could be due to an intrinsicallydeficient EBV-specificCTL response, cytotoxic granulesmediated.Thus, we performed anin-depth study of the phenotype of exvivo EBV- and CMV-specific CD8+T cells in MS patients and control patients,assessing their cytotoxic activity.Methods:We analyzed the profileof cytotoxic granules in EBV- andCMV-specific CD8+ T cells in a cohortof 13 early MS patients, 20 lateMS, 30 other neurological diseases(OND) patients and 7 healthy controlsubjects. Ex vivo analysis of EBV- orCMV-specific CD8+ T cells was performedusing HLA class I/tetramercomplexes coupled to CCR7 andCD57 markers in conjunction withperforin, granzymes A, BandKstaining.In a sub-cohort of MS patientsand controls, cytotoxic activity ofEBV- and CMV-specific CD8+ Tcells was investigated using a functionalCFSE CTL assay. Results: UsingHLA Class I tetramers for EBVand CMV, we found that the frequencyof EBV- or CMV-specificCD8+ T cells were similar in all studysubjects. Most of EBV- and CMVspecificCD8+Tcells were highly differentiated(CCR7-) and a variousproportion expressed the exhaustionmarker CD57. MS and OND patientshad increased perforin expression inEBV-specific CD8+ T cells. Most importantly,we found that MS patientswith longer disease duration tended tohave lower CTL cytotoxicity as comparedto earlyMSpatients or controls.Conclusions: Effector EBV-specificCD8+ T cells are increased in earlyMS, however their cytotoxic granuleprofile does not seem to be fully alteredand the cytotoxic activity ofthese cells is normal. However, thecytotoxic activity of CTL decreasedin late MS patients suggesting an exhaustionof EBV-specific CD8+ Tcells possibly due to EBV reactivation.This work was supported by theSwiss National Foundation PP00B3-124893, the Swiss Society for MS,and the Biaggi Foundation to RADP.
Resumo:
Given the role played by chemokines in the selective homing of immune cells, we sought to characterize the profile of chemokines produced by human dendritic cells (DC) following in vitro Aspergillus fumigatus infection and their ability to recruit cells involved in the antifungal defense. At the onset of A. fumigatus infection, DC released elevated amounts of CXCL8 that promote the migration of polymorphonuclear cells (PMN). Moreover, soluble factors released from A. fumigatus-infected DC increased also the surface expression of two activation markers, CD11b and CD18, on PMN. A. fumigatus infection resulted also in CCL3, CCL4, CXCL10 and CCL20 productions that induce the migration of effector memory Th1 cells. Moreover, the late expression of CCL19 suggests that A. fumigatus-infected DC could be implicated in the migration of CCR7+ naïve T cells and mature DC in lymph nodes. Together these results suggested the involvement of human DC in the regulation of innate and adaptive immunity against A. fumigatus through the recruitment of cells active in the fungal destruction.
Resumo:
Combining cell surface phenotyping with functional analysis, human CD8+ T cells have been divided into several subsets which are being studied extensively in diverse physiological situations, such as viral infection, cancer and ageing. In particular, so-called terminally differentiated effector cells possess a CD45RA+ CCR7- CD27- CD28- phenotype, contain perforin and, in different models, have been shown to exert direct ex vivo killing and to release interleukins upon both antigen-nonspecific and -specific stimulation. Using HLA class I multimers, we have identified a high frequency of peripheral CD8+ T cells that recognize a peptide derived from the self protein cytokeratin 18 presented by the HLA-A*0201 molecule. These cells can be detected in approximately 15% of the HLA-A2-positive healthy donors tested. A detailed analysis revealed that they must have divided extensively in vivo, have an effector cell phenotype and express various natural killer cell-associated receptors. Interestingly, however, they remained unresponsive to antigen-specific stimulation in vitro in terms of cytotoxicity and cytokine secretion. Thus, cytokeratin 18-specific cells constitute a frequently encountered, new CD8+ T lymphocyte subpopulation without classical effector status and with so far unknown function.
Resumo:
Functionally naive CD8 T cells in peripheral blood from adult humans can be fully described by their CD45RA(bright)CCR7(+)CD62L(+) cell surface phenotype. Cord blood lymphocytes, from healthy newborns, are homogenously functionally naive. Accordingly, the majority of cord blood CD8 T cells express the same pattern of cell surface molecules. Unexpectedly, however, a significant fraction of cord blood CD8 T cells express neither CCR7 nor CD62L. Yet these cells remain functionally naive as they contain high levels of TCR excision circles, have long telomeres, display highly polyclonal TCRs, and do not exhibit immediate effector functions. In addition, these CD8 T cells already represent a significant fraction of the mature naive CD8 single-positive thymocyte repertoire and may selectively express the cutaneous lymphocyte Ag. We suggest that CD8 single-positive thymocytes comprise two pools of naive precursors that exhibit distinct homing properties. Once seeded in the periphery, naive CCR7(+)CD62L(+) CD8 T cells patrol secondary lymphoid organs, whereas naive CCR7(-)CD62L(-) CD8 T cells selectively migrate to peripheral tissues such as skin.
Resumo:
In the paracortex of the lymph node (LN), T zone fibroblastic reticular cells (TRCs) orchestrate an immune response by guiding lymphocyte migration both physically, by creating three-dimensional (3D) cell networks, and chemically, by secreting the chemokines CCL19 and CCL21 that direct interactions between CCR7-expressing cells, including mature dendritic cells and naive T cells. TRCs also enwrap matrix-based conduits that transport fluid from the subcapsular sinus to high endothelial venules, and fluid flow through the draining LN rapidly increases upon tissue injury or inflammation. To determine whether fluid flow affects TRC organization or function within a 3D network, we regenerated the 3D LN T zone stromal network by culturing murine TRC clones within a macroporous polyurethane scaffold containing type I collagen and Matrigel and applying slow interstitial flow (1-23 microm/min). We show that the 3D environment and slow interstitial flow are important regulators of TRC morphology, organization, and CCL21 secretion. Without flow, CCL21 expression could not be detected. Furthermore, when flow through the LN was blocked in mice in vivo, CCL21 gene expression was down-regulated within 2 h. These results highlight the importance of lymph flow as a homeostatic regulator of constitutive TRC activity and introduce the concept that increased lymph flow may act as an early inflammatory cue to enhance CCL21 expression by TRCs, thereby ensuring efficient immune cell trafficking, lymph sampling, and immune response induction.
Resumo:
CD4(+)CD25(+)Foxp3(+) regulatory T cells (Treg) play an important role in the induction and maintenance of immune tolerance. Although adoptive transfer of bulk populations of Treg can prevent or treat T cell-mediated inflammatory diseases and transplant allograft rejection in animal models, optimal Treg immunotherapy in humans would ideally use antigen-specific rather than polyclonal Treg for greater specificity of regulation and avoidance of general suppression. However, no robust approaches have been reported for the generation of human antigen-specific Treg at a practical scale for clinical use. Here, we report a simple and cost-effective novel method to rapidly induce and expand large numbers of functional human alloantigen-specific Treg from antigenically naive precursors in vitro using allogeneic nontransformed B cells as stimulators. By this approach naive CD4(+)CD25(-) T cells could be expanded 8-fold into alloantigen-specific Treg after 3 weeks of culture without any exogenous cytokines. The induced alloantigen-specific Treg were CD45RO(+)CCR7(-) memory cells, and had a CD4(high), CD25(+), Foxp3(+), and CD62L (L-selectin)(+) phenotype. Although these CD4(high)CD25(+)Foxp3(+) alloantigen-specific Treg had no cytotoxic capacity, their suppressive function was cell-cell contact dependent and partially relied on cytotoxic T lymphocyte antigen-4 expression. This approach may accelerate the clinical application of Treg-based immunotherapy in transplantation and autoimmune diseases.