39 resultados para Brain tumors
Resumo:
Neural stem cells have been proposed as a new and promising treatment modality in various pathologies of the central nervous system, including malignant brain tumors. However, the underlying mechanism by which neural stem cells target tumor areas remains elusive. Monitoring of these cells is currently done by use of various modes of molecular imaging, such as optical imaging, magnetic resonance imaging and positron emission tomography, which is a novel technology for visualizing metabolism and signal transduction to gene expression. In this new context, the microenvironment of (malignant) brain tumors and the blood-brain barrier gains increased interest. The authors of this review give a unique overview of the current molecular-imaging techniques used in different therapeutic experimental brain tumor models in relation to neural stem cells. Such methods for molecular imaging of gene-engineered neural stem/progenitor cells are currently used to trace the location and temporal level of expression of therapeutic and endogenous genes in malignant brain tumors, closing the gap between in vitro and in vivo integrative biology of disease in neural stem cell transplantation.
Resumo:
Glioblastoma multiforme (GBM) tumors are the most common malignant primary brain tumors in adults. Although many GBM tumors are believed to be caused by self-renewing, glioblastoma-derived stem-like cells (GSCs), the mechanisms that regulate self-renewal and other oncogenic properties of GSCs are only now being unraveled. Here we showed that GSCs derived from GBM patient specimens express varying levels of the transcriptional repressor repressor element 1 silencing transcription factor (REST), suggesting heterogeneity across different GSC lines. Loss- and gain-of-function experiments indicated that REST maintains self-renewal of GSCs. High REST-expressing GSCs (HR-GSCs) produced tumors histopathologically distinct from those generated by low REST-expressing GSCs (LR-GSCs) in orthotopic mouse brain tumor models. Knockdown of REST in HR-GSCs resulted in increased survival in GSC-transplanted mice and produced tumors with higher apoptotic and lower invasive properties. Conversely, forced expression of exogenous REST in LR-GSCs produced decreased survival in mice and produced tumors with lower apoptotic and higher invasive properties, similar to HR-GSCs. Thus, based on our results, we propose that a novel function of REST is to maintain self-renewal and other oncogenic properties of GSCs and that REST can play a major role in mediating tumorigenicity in GBM. STEM CELLS 2012;30:405-414.
Resumo:
Hypoxia, a condition of insufficient oxygen availability to support metabolism, occurs when the vascular supply is interrupted, as in stroke. The identification of the hypoxic and viable tissue in stroke as compared with irreversible lesions (necrosis) has relevant implications for the treatment of ischemic stroke. Traditionally, imaging by positron emission tomography (PET), using 15O-based radiotracers, allowed the measurement of perfusion and oxygen extraction in stroke, providing important insights in its pathophysiology. However, these multitracer evaluations are of limited applicability in clinical settings. More recently, specific tracers have been developed, which accumulate with an inverse relationship to oxygen concentration and thus allow visualizing the hypoxic tissue non invasively. These belong to two main groups: nitroimidazoles, and among these the 18F-Fluoroimidazole (18F-FMISO) is the most widely used, and the copper-based tracers, represented mainly by Cu-ATSM. While these tracers have been at first developed and tested in order to image hypoxia in tumors, they have also shown promising results in stroke models and preliminary clinical studies in patients with cardiovascular disorders, allowing the detection of hypoxic tissue and the prediction of the extent of subsequent ischemia and clinical outcome. These tracers have therefore the potential to select an appropriate subgroup of patients who could benefit from a hypoxia-directed treatment and provide prognosis relevant imaging. The molecular imaging of hypoxia made important progress over the last decade and has a potential for integration into the diagnostic and therapeutic workup of patients with ischemic stroke.
Resumo:
This paper reviews the literature on clinical signs such as imitation behavior, grasp reaction, manipulation of tools, utilization behavior, environmental dependency, hyperlexia, hypergraphia and echolalia. Some aspects of this semiology are of special interest because they refer to essential notions such as free-will and autonomy.
Resumo:
Introduction: We previously reported the results of a phase II study for patients with newly diagnosed primary CNS lymphoma (PCNSL) treated with autologous peripheral blood stem-cell transplantation (aPBSCT) and responseadapted whole brain radiotherapy (WBRT). The purpose of this report is to update the initial results and provide long-term data regarding overall survival, prognostic factors, and the risk of treatment-related neurotoxicity.Methods: A long-term follow-up was conducted on surviving primary central nervous system lymphoma patients having been treated according to the ,,OSHO-53 study", which was initiated by the Ostdeutsche Studiengruppe Hamatologie-Onkologie. Between August 1999 and October 2004 twentythree patients with an average age of 55 and median Karnofsky performance score of 70% were enrolled and received high-dose mthotrexate (HD-MTX) on days 1 and 10. In case of at least a partial remission (PR), high-dose busulfan/ thiotepa (HD-BuTT) followed by aPBSCT was performed. Patients without response to induction or without complete remission (CR) after HD-BuTT received WBRT. All patients (n=8), who are alive in 2011, were contacted and Mini Mental State examination (MMSE) and the EORTC QLQ-C30 were performed.Results: Eight patients are still alive with a median follow-up of 116,9 months (79 - 141, range). One of them suffered from a late relapse eight and a half years after initial diagnosis of PCNSL, another one suffers from a gall bladder carcinoma. Both patients are alive, the one with the relapse of PCNSL has finished rescue therapy and is further observed, the one with gall baldder carcinoma is still under therapy. MMSE and QlQ-C30 showed impressive results in the patients, who were not irradiated. Only one of the irradiated patients is still alive with a clear neurologic deficit but acceptable quality of life.Conclusions: Long-term follow-up of our patients, who were included in the OSHO-53 study show an overall survival of 30 percent. If WBRT can be avoided no long-term neurotoxicity has been observed and the patients benefit from excellent Quality of Life. Induction chemotherapy with two cycles of HD-MTX should be intensified to improve the unsatisfactory OAS of 30 percent.
Resumo:
BACKGROUND: Rectal and pararectal gastrointestinal stromal tumors (GISTs) are rare. The optimal management strategy for primary localized GISTs remains poorly defined. METHODS: We conducted a retrospective analysis of 41 patients with localized rectal or pararectal GISTs treated between 1991 and 2011 in 13 French Sarcoma Group centers. RESULTS: Of 12 patients who received preoperative imatinib therapy for a median duration of 7 (2-12) months, 8 experienced a partial response, 3 had stable disease, and 1 had a complete response. Thirty and 11 patients underwent function-sparing conservative surgery and abdominoperineal resection, respectively. Tumor resections were mostly R0 and R1 in 35 patients. Tumor rupture occurred in 12 patients. Eleven patients received postoperative imatinib with a median follow-up of 59 (2.4-186) months. The median time to disease relapse was 36 (9.8-62) months. The 5-year overall survival rate was 86.5%. Twenty patients developed local recurrence after surgery alone, two developed recurrence after resection combined with preoperative and/or postoperative imatinib, and eight developed metastases. In univariate analysis, the mitotic index (≤5) and tumor size (≤5 cm) were associated with a significantly decreased risk of local relapse. Perioperative imatinib was associated with a significantly reduced risk of overall relapse and local relapse. CONCLUSIONS: Perioperative imatinib therapy was associated with improved disease-free survival. Preoperative imatinib was effective. Tumor shrinkage has a clear benefit for local excision in terms of feasibility and function preservation. Given the complexity of rectal GISTs, referral of patients with this rare disease to expert centers to undergo a multidisciplinary approach is recommended.
Resumo:
Abnormalities in the topology of brain networks may be an important feature and etiological factor for psychogenic non-epileptic seizures (PNES). To explore this possibility, we applied a graph theoretical approach to functional networks based on resting state EEGs from 13 PNES patients and 13 age- and gender-matched controls. The networks were extracted from Laplacian-transformed time-series by a cross-correlation method. PNES patients showed close to normal local and global connectivity and small-world structure, estimated with clustering coefficient, modularity, global efficiency, and small-worldness (SW) metrics, respectively. Yet the number of PNES attacks per month correlated with a weakness of local connectedness and a skewed balance between local and global connectedness quantified with SW, all in EEG alpha band. In beta band, patients demonstrated above-normal resiliency, measured with assortativity coefficient, which also correlated with the frequency of PNES attacks. This interictal EEG phenotype may help improve differentiation between PNES and epilepsy. The results also suggest that local connectivity could be a target for therapeutic interventions in PNES. Selective modulation (strengthening) of local connectivity might improve the skewed balance between local and global connectivity and so prevent PNES events.
Resumo:
BACKGROUND: Intra-specific variation in melanocyte pigmentation, common in the animal kingdom, has caught the eye of naturalists and biologists for centuries. In vertebrates, dark, eumelanin pigmentation is often genetically determined and associated with various behavioral and physiological traits, suggesting that the genes involved in melanism have far reaching pleiotropic effects. The mechanisms linking these traits remain poorly understood, and the potential involvement of developmental processes occurring in the brain early in life has not been investigated. We examined the ontogeny of rapid eye movement (REM) sleep, a state involved in brain development, in a wild population of barn owls (Tyto alba) exhibiting inter-individual variation in melanism and covarying traits. In addition to sleep, we measured melanistic feather spots and the expression of a gene in the feather follicles implicated in melanism (PCSK2). RESULTS: As in mammals, REM sleep declined with age across a period of brain development in owlets. In addition, inter-individual variation in REM sleep around this developmental trajectory was predicted by variation in PCSK2 expression in the feather follicles, with individuals expressing higher levels exhibiting a more precocial pattern characterized by less REM sleep. Finally, PCSK2 expression was positively correlated with feather spotting. CONCLUSIONS: We demonstrate that the pace of brain development, as reflected in age-related changes in REM sleep, covaries with the peripheral activation of the melanocortin system. Given its role in brain development, variation in nestling REM sleep may lead to variation in adult brain organization, and thereby contribute to the behavioral and physiological differences observed between adults expressing different degrees of melanism.
Resumo:
Anatomical structures and mechanisms linking genes to neuropsychiatric disorders are not deciphered. Reciprocal copy number variants at the 16p11.2 BP4-BP5 locus offer a unique opportunity to study the intermediate phenotypes in carriers at high risk for autism spectrum disorder (ASD) or schizophrenia (SZ). We investigated the variation in brain anatomy in 16p11.2 deletion and duplication carriers. Beyond gene dosage effects on global brain metrics, we show that the number of genomic copies negatively correlated to the gray matter volume and white matter tissue properties in cortico-subcortical regions implicated in reward, language and social cognition. Despite the near absence of ASD or SZ diagnoses in our 16p11.2 cohort, the pattern of brain anatomy changes in carriers spatially overlaps with the well-established structural abnormalities in ASD and SZ. Using measures of peripheral mRNA levels, we confirm our genomic copy number findings. This combined molecular, neuroimaging and clinical approach, applied to larger datasets, will help interpret the relative contributions of genes to neuropsychiatric conditions by measuring their effect on local brain anatomy.Molecular Psychiatry advance online publication, 25 November 2014; doi:10.1038/mp.2014.145.
Resumo:
Previous work has shown that aggregate cultures prepared from fetal rat telencephalon and grown in a chemically defined medium offer a useful model to study developmental processes such as myelin synthesis. Since compact myelin is formed in these cultures, we investigated the possibility to use this culture system to study demyelinating mechanisms. In particular, we examined the effect of a monoclonal antibody (8-18C5) directed against the myelin/oligodendrocyte glycoprotein (MOG). We found that addition of anti-MOG antibodies and complement to aggregate cultures led to a highly significant decrease in myelin basic protein (MBP) content and 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) specific activity. These results indicate that, in our culture system, anti-MOG antibodies have a strong demyelinating effect.
Resumo:
Abstract Part I : Background : Isolated lung perfusion (ILP) was designed for the treatment of loco-regional malignancies of the lung. In contrast to intravenous (IV) drug application, ILP allows for a selective administration of cytostatic agents such as doxorubicin to the lung while sparing non-affected tissues. However, the clinical results with ILP were disappointing. Doxorubicinbased ILP on sarcoma rodent lungs suggested high overall doxorubicin concentrations within the perfused lung but a poor penetration of the cytostatic agent into tumors. The same holds true for liposomal-encapsulated macromolecular doxorubicin (LiporubicinTM) In specific conditions, low-dose photodynamic therapy (PDT) can enhance the distribution of macromolecules across the endothelial bamer in solid tumors. It was recently postulated that tumor neovessels were more responsive to PDT than the normal vasculature. We therefore hypothesized that Visudyne®-mediated PDT could selectively increase liposomal doxorubicin (LiporubicinTM) uptake in sarcoma tumors to rodent lungs during intravenous (IV) drug administration and isolated lung perfusion (ILP). Material and Methods : A sarcoma tumor was generated in the left lung of Fisher rats by subpleural injection of a sarcoma cell ,suspension via thoracotomy. Ten days later, LiporubicinTM is administered IV or by single pass antegrade ILP, with or without Visudyne® -mediated low-dose PDT pre-treatment of the sarcoma bearing lung. The drug concentration and distribution were assessed separately in tumors and lung tissues by high pressure liquid chromatography (HPLC) and fluorescence microscopy (FNI~, respectively. Results : PDT pretreatment before IV LiporubicinTM administration resulted in a significantly higher tumor drug uptake and tumor to lung drug ratio compared to IV drug injection alone without affecting the blood flow and drug distribution in the lung. PDT pre-treatment before LiporubicinTM-based ILP also resulted in a higher tumor drug uptake and a higher tumor to lung drug ratio compared to ILP alone, however, these differences were not significant due to a heterogeneous blood flow drug distribution during ILP which was further accentuated by PDT. Conclusions : Low-dose Visudyne®-mediated PDT pre-treatment has the potential to selectively enhance liposomal encapsulated doxorubicin uptake in tumors but not in normal lung tissue after IV drug application in a rat model of sarcoma tumors to the lung which opens new perspectives for the treatment of superficially spreading chemoresistant tumors of the chest cavity such as mesothelioma or malignant effusion. However, the impact of PDT on macromolecular drug uptake during ILP is limited since its therapeutic advantage is circumvented by ILP-induced heterogeneicity of blood flow and drug distribution Abstract Part II Background : Photodynamic therapy (PDT) with Visudyne® acts by direct cellular phototoxicity and/or by an indirect vascular-mediated effect. Here, we demonstrate that the vessel integrity interruption by PDT can promote the extravasation of a macromolecular agent in normal tissue. To obtain extravasation in normal tissue PDT conditions were one order of magnitude more intensive than the ones in tissue containing neovessels reported in the literature. Material and Methods : Fluorescein isothiocyanate dextran (FITC-D, 2000kDa), a macromolecular agent, was intravenously injected 10 minutes before (LKO group, n=14) or 2 hours (LK2 group, n=16) after Visudyne® mediated PDT in nude mice bearing a dorsal skin fold chamber. Control animals had no PDT (CTRL group, n=8). The extravasation of FITC-D from blood vessels in striated muscle tissue was observed in both groups in real-time for up to 2500 seconds after injection. We also monitored PDT-induced leukocyte rolling in-vivo and assessed, by histology, the corresponding inflammatory reaction score in the dorsal skin fold chambers. Results : In all animals, at the applied PDT conditions, FITC-D extravasation was significantly enhanced in the PDT treated areas as compared to the surrounding non-treated areas (p<0.0001). There was no FITC-D leakage in the control animals. Animals from the LKO group had significantly less FITC-D extravasation than those from the LK2 group (p = 0.0002). In the LKO group FITC-D leakage correlated significantly with the inflammation (p < 0.001). Conclusions: At the selected conditions, Visudyne-mediated PDT promotes vascular leakage and FITC-D extravasation into the interstitial space of normal tissue. The intensity of vascular leakage depends on the time interval between PDT and FITC-D injection. This concept could be used to locally modulate the delivery of macromolecules in vivo. Résumé : La perfusion cytostatique isolée du poumon permet une administration sélective des agents cytostatiques sans implication de la circulation systémique avec une forte accumulation au niveau du poumon mais une faible pénétration dans les tumeurs. La thérapie photodynamique (PDT) qui consiste en l'application d'un sensibilisateur activé par lumière laser non- thermique d'une longueur d'onde définie permet dans certaines conditions, une augmentation de la pénétration des agents cytostatiques macromoléculaires à travers la barrière endothéliale tumorale. Nous avons exploré cet avantage thérapeutique de la PDT dans un modèle expérimental afin d'augmenter d'une manière sélective la pénétration tumorale de la doxorubicin pegylée, liposomal- encapsulée macromoléculaire (Liporubicin). Une tumeur sarcomateuse a été générée au niveau du poumon de rongeur suivie d'administration de Liporubicin, soit par voie intraveineuse soit par perfusion isolée du poumon (ILP). Une partie des animaux ont reçus un prétraitement de la tumeur et du poumon sous jacent par PDT avec Visudyne comme photosensibilisateur. Les résultats ont démontrés que la PDT permet, sous certaines conditions, une augmentation sélective de Liporubicin dans les tumeurs mais pas dans le parenchyme pulmonaire sous jacent. Après administration intraveineuse de Liporubicin et prétraitement par PDT, l'accumulation dans les tumeurs était significative par rapport au poumon, et aux tumeurs sans PDT. Le même phénomène est observé après ILP du poumon. Cependant, les différences avec ou sans PDT n'étaient pas significatives lié à und distribution hétérogène de Liporubicin dans le poumon perfusé après ILP. Dans une deuxième partie de l'expérimentation, nous avons exploré la microscopie intra-vitale pour déterminer l'extravasion des substances macromoléculaires (FITS) à travers la barrière endothéliale avec ou sans Visudyne-PDT au niveau des chambres dorsales des souris nues. Les résultats montrent qu'après PDT, l'extravasion de FITS a été augmentée de manière significative par rapport au tissu non traité. L'intensité de l'extravasion de FITS dépendait également de l'intervalle entre PDT et injection de FITS. En conclusion, les expérimentations montrent que la PDT est capable, sous certaines conditions, d'augmenter de manière significative l'extravasion des macromolécules à travers la barrière endothéliale et leur accumulation dans des tumeurs mais pas dans le parenchyme pulmonaire. Ces résultats permettent une nouvelle perspective de traitement pour des tumeurs superficielles intrathoraciques chimio-résistent comme l'épanchement pleural malin ou le mésothéliome pleural.
Resumo:
Rotation-mediated aggregating brain cell cultures at two different maturational stages (DIV 11 and DIV 20) were subjected for 1 or 2 hours to ischaemic conditions by transient immobilization (arrest of media circulation). During recovery, cell damage was evaluated by measuring changes in cell type-specific enzyme activities and total protein content. It was found that in immature cultures (DIV 11), immobilization for 1 or 2 hours did not affect the parameters measured. By contrast, at DIV 20, ischaemic conditions for 1 hour caused a pronounced decrease in the activities of glutamic acid decarboxylase and choline acetyltransferase. A significant decrease in these neuron-specific enzyme activities was found at post-ischaemic days 1-14, indicating immediate and irreversible neuronal damage. The activity of the astrocyte-specific enzyme, glutamine synthetase, was significantly increased at 4 days post-treatment; equal to control values at 6 days; and significantly decreased at 14 days after the ischaemic insult. Immobilization of DIV 20 cultures for 2 hours caused a drastic reduction in all the parameters measured at post-ischaemic day 6. Generally, the ischaemic conditions appeared to be more detrimental to neurons than to astrocytes, and GABAergic neurons were more affected than cholinergic neurons.