46 resultados para Biomedical informatics
Resumo:
BACKGROUND: A possible strategy for increasing smoking cessation rates could be to provide smokers who have contact with healthcare systems with feedback on the biomedical or potential future effects of smoking, e.g. measurement of exhaled carbon monoxide (CO), lung function, or genetic susceptibility to lung cancer. OBJECTIVES: To determine the efficacy of biomedical risk assessment provided in addition to various levels of counselling, as a contributing aid to smoking cessation. SEARCH STRATEGY: We systematically searched the Cochrane Collaboration Tobacco Addiction Group Specialized Register, Cochrane Central Register of Controlled Trials 2008 Issue 4, MEDLINE (1966 to January 2009), and EMBASE (1980 to January 2009). We combined methodological terms with terms related to smoking cessation counselling and biomedical measurements. SELECTION CRITERIA: Inclusion criteria were: a randomized controlled trial design; subjects participating in smoking cessation interventions; interventions based on a biomedical test to increase motivation to quit; control groups receiving all other components of intervention; an outcome of smoking cessation rate at least six months after the start of the intervention. DATA COLLECTION AND ANALYSIS: Two assessors independently conducted data extraction on each paper, with disagreements resolved by consensus. Results were expressed as a relative risk (RR) for smoking cessation with 95% confidence intervals (CI). Where appropriate a pooled effect was estimated using a Mantel-Haenszel fixed effect method. MAIN RESULTS: We included eleven trials using a variety of biomedical tests. Two pairs of trials had sufficiently similar recruitment, setting and interventions to calculate a pooled effect; there was no evidence that CO measurement in primary care (RR 1.06, 95% CI 0.85 to 1.32) or spirometry in primary care (RR 1.18, 95% CI 0.77 to 1.81) increased cessation rates. We did not pool the other seven trials. One trial in primary care detected a significant benefit of lung age feedback after spirometry (RR 2.12; 95% CI 1.24 to 3.62). One trial that used ultrasonography of carotid and femoral arteries and photographs of plaques detected a benefit (RR 2.77; 95% CI 1.04 to 7.41) but enrolled a population of light smokers. Five trials failed to detect evidence of a significant effect. One of these tested CO feedback alone and CO + genetic susceptibility as two different intervention; none of the three possible comparisons detected significant effects. Three others used a combination of CO and spirometry feedback in different settings, and one tested for a genetic marker. AUTHORS' CONCLUSIONS: There is little evidence about the effects of most types of biomedical tests for risk assessment. Spirometry combined with an interpretation of the results in terms of 'lung age' had a significant effect in a single good quality trial. Mixed quality evidence does not support the hypothesis that other types of biomedical risk assessment increase smoking cessation in comparison to standard treatment. Only two pairs of studies were similar enough in term of recruitment, setting, and intervention to allow meta-analysis.
Resumo:
This letter describes a data telemetry biomedical experiment. An implant, consisting of a biometric data sensor, electronics, an antenna, and a biocompatible capsule, is described. All the elements were co-designed in order to maximize the transmission distance. The device was implanted in a pig for an in vivo experiment of temperature monitoring.
Resumo:
Understanding how nanoparticles may affect immune responses is an essential prerequisite to developing novel clinical applications. To investigate nanoparticle-dependent outcomes on immune responses, dendritic cells (DCs) were treated with model biomedical poly(vinylalcohol)-coated super-paramagnetic iron oxide nanoparticles (PVA-SPIONs). PVA-SPIONs uptake by human monocyte-derived DCs (MDDCs) was analyzed by flow cytometry (FACS) and advanced imaging techniques. Viability, activation, function, and stimulatory capacity of MDDCs were assessed by FACS and an in vitro CD4(+) T cell assay. PVA-SPION uptake was dose-dependent, decreased by lipopolysaccharide (LPS)-induced MDDC maturation at higher particle concentrations, and was inhibited by cytochalasin D pre-treatment. PVA-SPIONs did not alter surface marker expression (CD80, CD83, CD86, myeloid/plasmacytoid DC markers) or antigen-uptake, but decreased the capacity of MDDCs to process antigen, stimulate CD4(+) T cells, and induce cytokines. The decreased antigen processing and CD4(+) T cell stimulation capability of MDDCs following PVA-SPION treatment suggests that MDDCs may revert to a more functionally immature state following particle exposure.
Resumo:
Because of the emergence of dried blood spots (DBS) as an attractive alternative to conventional venous plasma sampling in many pharmaceutical companies and clinical laboratories, different analytical approaches have been developed to enable automated handling of DBS samples without any pretreatment. Associated with selective and sensitive MS-MS detection, these procedures give good results in the rapid identification and quantification of drugs (generally less than 3 min total run time), which is desirable because of the high throughput requirements of analytical laboratories. The objective of this review is to describe the analytical concepts of current direct DBS techniques and to present their advantages and disadvantages, with particular focus on automation capacity and commercial availability. Finally, an overview of the different biomedical applications in which these concepts could be of major interest will be presented.
Resumo:
A straightforward route is proposed for the multi-gram scale synthesis of heterobifunctional poly(ethylene glycol) (PEG) oligomers containing combination of triethyloxysilane extremity for surface modification of metal oxides and amino or azido active end groups for further functionalization. The suitability of these PEG derivatives to be conjugated to nanomaterials was shown by pegylation of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles (NPs), followed by functionalization with small peptide ligands for biomedical applications.
Resumo:
The adaptive function of melanin located in the integument is well known. Although pigments are also deposited in various internal organs, their function is unclear. A review of the literature revealed that 'internal melanin' protects against parasites, pollutants, low temperature, oxidative stress, hypoxemia and UV light, and is involved in the development and function of organs. Importantly, several studies have shown that the amount of melanin deposited on the external body surface is correlated with the amount located inside the body. This finding raises the possibility that internal melanin plays more important physiological roles in dark than light-colored individuals. Internal melanin and coloration may therefore not evolve independently. This further emphasizes the major role played by indirect selection in evolutionary processes.
Resumo:
Building a personalized model to describe the drug concentration inside the human body for each patient is highly important to the clinical practice and demanding to the modeling tools. Instead of using traditional explicit methods, in this paper we propose a machine learning approach to describe the relation between the drug concentration and patients' features. Machine learning has been largely applied to analyze data in various domains, but it is still new to personalized medicine, especially dose individualization. We focus mainly on the prediction of the drug concentrations as well as the analysis of different features' influence. Models are built based on Support Vector Machine and the prediction results are compared with the traditional analytical models.
Resumo:
BACKGROUND: Living in a multisensory world entails the continuous sensory processing of environmental information in order to enact appropriate motor routines. The interaction between our body and our brain is the crucial factor for achieving such sensorimotor integration ability. Several clinical conditions dramatically affect the constant body-brain exchange, but the latest developments in biomedical engineering provide promising solutions for overcoming this communication breakdown. NEW METHOD: The ultimate technological developments succeeded in transforming neuronal electrical activity into computational input for robotic devices, giving birth to the era of the so-called brain-machine interfaces. Combining rehabilitation robotics and experimental neuroscience the rise of brain-machine interfaces into clinical protocols provided the technological solution for bypassing the neural disconnection and restore sensorimotor function. RESULTS: Based on these advances, the recovery of sensorimotor functionality is progressively becoming a concrete reality. However, despite the success of several recent techniques, some open issues still need to be addressed. COMPARISON WITH EXISTING METHOD(S): Typical interventions for sensorimotor deficits include pharmaceutical treatments and manual/robotic assistance in passive movements. These procedures achieve symptoms relief but their applicability to more severe disconnection pathologies is limited (e.g. spinal cord injury or amputation). CONCLUSIONS: Here we review how state-of-the-art solutions in biomedical engineering are continuously increasing expectances in sensorimotor rehabilitation, as well as the current challenges especially with regards to the translation of the signals from brain-machine interfaces into sensory feedback and the incorporation of brain-machine interfaces into daily activities.
Resumo:
Genome-wide association studies (GWAS) have identified many risk loci for complex diseases, but effect sizes are typically small and information on the underlying biological processes is often lacking. Associations with metabolic traits as functional intermediates can overcome these problems and potentially inform individualized therapy. Here we report a comprehensive analysis of genotype-dependent metabolic phenotypes using a GWAS with non-targeted metabolomics. We identified 37 genetic loci associated with blood metabolite concentrations, of which 25 show effect sizes that are unusually high for GWAS and account for 10-60% differences in metabolite levels per allele copy. Our associations provide new functional insights for many disease-related associations that have been reported in previous studies, including those for cardiovascular and kidney disorders, type 2 diabetes, cancer, gout, venous thromboembolism and Crohn's disease. The study advances our knowledge of the genetic basis of metabolic individuality in humans and generates many new hypotheses for biomedical and pharmaceutical research.
Resumo:
BACKGROUND: A possible strategy for increasing smoking cessation rates could be to provide smokers who have contact with healthcare systems with feedback on the biomedical or potential future effects of smoking, e.g. measurement of exhaled carbon monoxide (CO), lung function, or genetic susceptibility to lung cancer. OBJECTIVES: To determine the efficacy of biomedical risk assessment provided in addition to various levels of counselling, as a contributing aid to smoking cessation. SEARCH METHODS: For the most recent update, we searched the Cochrane Collaboration Tobacco Addiction Group Specialized Register in July 2012 for studies added since the last update in 2009. SELECTION CRITERIA: Inclusion criteria were: a randomized controlled trial design; subjects participating in smoking cessation interventions; interventions based on a biomedical test to increase motivation to quit; control groups receiving all other components of intervention; an outcome of smoking cessation rate at least six months after the start of the intervention. DATA COLLECTION AND ANALYSIS: Two assessors independently conducted data extraction on each paper, with disagreements resolved by consensus. Results were expressed as a relative risk (RR) for smoking cessation with 95% confidence intervals (CI). Where appropriate, a pooled effect was estimated using a Mantel-Haenszel fixed-effect method. MAIN RESULTS: We included 15 trials using a variety of biomedical tests. Two pairs of trials had sufficiently similar recruitment, setting and interventions to calculate a pooled effect; there was no evidence that carbon monoxide (CO) measurement in primary care (RR 1.06, 95% CI 0.85 to 1.32) or spirometry in primary care (RR 1.18, 95% CI 0.77 to 1.81) increased cessation rates. We did not pool the other 11 trials due to the presence of substantial clinical heterogeneity. Of the remaining 11 trials, two trials detected statistically significant benefits: one trial in primary care detected a significant benefit of lung age feedback after spirometry (RR 2.12, 95% CI 1.24 to 3.62) and one trial that used ultrasonography of carotid and femoral arteries and photographs of plaques detected a benefit (RR 2.77, 95% CI 1.04 to 7.41) but enrolled a population of light smokers and was judged to be at unclear risk of bias in two domains. Nine further trials did not detect significant effects. One of these tested CO feedback alone and CO combined with genetic susceptibility as two different interventions; none of the three possible comparisons detected significant effects. One trial used CO measurement, one used ultrasonography of carotid arteries and two tested for genetic markers. The four remaining trials used a combination of CO and spirometry feedback in different settings. AUTHORS' CONCLUSIONS: There is little evidence about the effects of most types of biomedical tests for risk assessment on smoking cessation. Of the fifteen included studies, only two detected a significant effect of the intervention. Spirometry combined with an interpretation of the results in terms of 'lung age' had a significant effect in a single good quality trial but the evidence is not optimal. A trial of carotid plaque screening using ultrasound also detected a significant effect, but a second larger study of a similar feedback mechanism did not detect evidence of an effect. Only two pairs of studies were similar enough in terms of recruitment, setting, and intervention to allow meta-analyses; neither of these found evidence of an effect. Mixed quality evidence does not support the hypothesis that other types of biomedical risk assessment increase smoking cessation in comparison to standard treatment. There is insufficient evidence with which to evaluate the hypothesis that multiple types of assessment are more effective than single forms of assessment.
Resumo:
BACKGROUND: A possible strategy for increasing smoking cessation rates could be to provide smokers who have contact with healthcare systems with feedback on the biomedical or potential future effects of smoking, e.g. measurement of exhaled carbon monoxide (CO), lung function, or genetic susceptibility to lung cancer. We reviewed systematically data on smoking cessation rates from controlled trials that used biomedical risk assessment and feedback. OBJECTIVES: To determine the efficacy of biomedical risk assessment provided in addition to various levels of counselling, as a contributing aid to smoking cessation. SEARCH STRATEGY: We systematically searched he Cochrane Collaboration Tobacco Addiction Group Specialized Register, Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (1966 to 2004), and EMBASE (1980 to 2004). We combined methodological terms with terms related to smoking cessation counselling and biomedical measurements. SELECTION CRITERIA: Inclusion criteria were: a randomized controlled trial design; subjects participating in smoking cessation interventions; interventions based on a biomedical test to increase motivation to quit; control groups receiving all other components of intervention; an outcome of smoking cessation rate at least six months after the start of the intervention. DATA COLLECTION AND ANALYSIS: Two assessors independently conducted data extraction on each paper, with disagreements resolved by consensus. MAIN RESULTS: From 4049 retrieved references, we selected 170 for full text assessment. We retained eight trials for data extraction and analysis. One of the eight used CO alone and CO + Genetic Susceptibility as two different intervention groups, giving rise to three possible comparisons. Three of the trials isolated the effect of exhaled CO on smoking cessation rates resulting in the following odds ratios (ORs) and 95% confidence intervals (95% CI): 0.73 (0.38 to 1.39), 0.93 (0.62 to 1.41), and 1.18 (0.84 to 1.64). Combining CO measurement with genetic susceptibility gave an OR of 0.58 (0.29 to 1.19). Exhaled CO measurement and spirometry were used together in three trials, resulting in the following ORs (95% CI): 0.6 (0.25 to 1.46), 2.45 (0.73 to 8.25), and 3.50 (0.88 to 13.92). Spirometry results alone were used in one other trial with an OR of 1.21 (0.60 to 2.42).Two trials used other motivational feedback measures, with an OR of 0.80 (0.39 to 1.65) for genetic susceptibility to lung cancer alone, and 3.15 (1.06 to 9.31) for ultrasonography of carotid and femoral arteries performed in light smokers (average 10 to 12 cigarettes a day). AUTHORS' CONCLUSIONS: Due to the scarcity of evidence of sufficient quality, we can make no definitive statements about the effectiveness of biomedical risk assessment as an aid for smoking cessation. Current evidence of lower quality does not however support the hypothesis that biomedical risk assessment increases smoking cessation in comparison with standard treatment. Only two studies were similar enough in term of recruitment, setting, and intervention to allow pooling of data and meta-analysis.