45 resultados para ABSENCE DATA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Identifying the boundary of a species' niche from observational and environmental data is a common problem in ecology and conservation biology and a variety of techniques have been developed or applied to model niches and predict distributions. Here, we examine the performance of some pattern-recognition methods as ecological niche models (ENMs). Particularly, one-class pattern recognition is a flexible and seldom used methodology for modelling ecological niches and distributions from presence-only data. The development of one-class methods that perform comparably to two-class methods (for presence/absence data) would remove modelling decisions about sampling pseudo-absences or background data points when absence points are unavailable. 2. We studied nine methods for one-class classification and seven methods for two-class classification (five common to both), all primarily used in pattern recognition and therefore not common in species distribution and ecological niche modelling, across a set of 106 mountain plant species for which presence-absence data was available. We assessed accuracy using standard metrics and compared trade-offs in omission and commission errors between classification groups as well as effects of prevalence and spatial autocorrelation on accuracy. 3. One-class models fit to presence-only data were comparable to two-class models fit to presence-absence data when performance was evaluated with a measure weighting omission and commission errors equally. One-class models were superior for reducing omission errors (i.e. yielding higher sensitivity), and two-classes models were superior for reducing commission errors (i.e. yielding higher specificity). For these methods, spatial autocorrelation was only influential when prevalence was low. 4. These results differ from previous efforts to evaluate alternative modelling approaches to build ENM and are particularly noteworthy because data are from exhaustively sampled populations minimizing false absence records. Accurate, transferable models of species' ecological niches and distributions are needed to advance ecological research and are crucial for effective environmental planning and conservation; the pattern-recognition approaches studied here show good potential for future modelling studies. This study also provides an introduction to promising methods for ecological modelling inherited from the pattern-recognition discipline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Few examples of habitat-modelling studies of rare and endangered species exist in the literature, although from a conservation perspective predicting their distribution would prove particularly useful. Paucity of data and lack of valid absences are the probable reasons for this shortcoming. Analytic solutions to accommodate the lack of absence include the ecological niche factor analysis (ENFA) and the use of generalized linear models (GLM) with simulated pseudo-absences. 2. In this study we tested a new approach to generating pseudo-absences, based on a preliminary ENFA habitat suitability (HS) map, for the endangered species Eryngium alpinum. This method of generating pseudo-absences was compared with two others: (i) use of a GLM with pseudo-absences generated totally at random, and (ii) use of an ENFA only. 3. The influence of two different spatial resolutions (i.e. grain) was also assessed for tackling the dilemma of quality (grain) vs. quantity (number of occurrences). Each combination of the three above-mentioned methods with the two grains generated a distinct HS map. 4. Four evaluation measures were used for comparing these HS maps: total deviance explained, best kappa, Gini coefficient and minimal predicted area (MPA). The last is a new evaluation criterion proposed in this study. 5. Results showed that (i) GLM models using ENFA-weighted pseudo-absence provide better results, except for the MPA value, and that (ii) quality (spatial resolution and locational accuracy) of the data appears to be more important than quantity (number of occurrences). Furthermore, the proposed MPA value is suggested as a useful measure of model evaluation when used to complement classical statistical measures. 6. Synthesis and applications. We suggest that the use of ENFA-weighted pseudo-absence is a possible way to enhance the quality of GLM-based potential distribution maps and that data quality (i.e. spatial resolution) prevails over quantity (i.e. number of data). Increased accuracy of potential distribution maps could help to define better suitable areas for species protection and reintroduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a multivariate approach to the study of geographic species distribution which does not require absence data. Building on Hutchinson's concept of the ecological niche, this factor analysis compares, in the multidimensional space of ecological variables, the distribution of the localities where the focal species was observed to a reference set describing the whole study area. The first factor extracted maximizes the marginality of the focal species, defined as the ecological distance between the species optimum and the mean habitat within the reference area. The other factors maximize the specialization of this focal species, defined as the ratio of the ecological variance in mean habitat to that observed for the focal species. Eigenvectors and eigenvalues are readily interpreted and can be used to build habitat-suitability maps. This approach is recommended in Situations where absence data are not available (many data banks), unreliable (most cryptic or rare species), or meaningless (invaders). We provide an illustration and validation of the method for the alpine ibex, a species reintroduced in Switzerland which presumably has not yet recolonized its entire range.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Multiple logistic regression is precluded from many practical applications in ecology that aim to predict the geographic distributions of species because it requires absence data, which are rarely available or are unreliable. In order to use multiple logistic regression, many studies have simulated "pseudo-absences" through a number of strategies, but it is unknown how the choice of strategy influences models and their geographic predictions of species. In this paper we evaluate the effect of several prevailing pseudo-absence strategies on the predictions of the geographic distribution of a virtual species whose "true" distribution and relationship to three environmental predictors was predefined. We evaluated the effect of using a) real absences b) pseudo-absences selected randomly from the background and c) two-step approaches: pseudo-absences selected from low suitability areas predicted by either Ecological Niche Factor Analysis: (ENFA) or BIOCLIM. We compared how the choice of pseudo-absence strategy affected model fit, predictive power, and information-theoretic model selection results. Results Models built with true absences had the best predictive power, best discriminatory power, and the "true" model (the one that contained the correct predictors) was supported by the data according to AIC, as expected. Models based on random pseudo-absences had among the lowest fit, but yielded the second highest AUC value (0.97), and the "true" model was also supported by the data. Models based on two-step approaches had intermediate fit, the lowest predictive power, and the "true" model was not supported by the data. Conclusion If ecologists wish to build parsimonious GLM models that will allow them to make robust predictions, a reasonable approach is to use a large number of randomly selected pseudo-absences, and perform model selection based on an information theoretic approach. However, the resulting models can be expected to have limited fit.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

1. Model-based approaches have been used increasingly in conservation biology over recent years. Species presence data used for predictive species distribution modelling are abundant in natural history collections, whereas reliable absence data are sparse, most notably for vagrant species such as butterflies and snakes. As predictive methods such as generalized linear models (GLM) require absence data, various strategies have been proposed to select pseudo-absence data. However, only a few studies exist that compare different approaches to generating these pseudo-absence data. 2. Natural history collection data are usually available for long periods of time (decades or even centuries), thus allowing historical considerations. However, this historical dimension has rarely been assessed in studies of species distribution, although there is great potential for understanding current patterns, i.e. the past is the key to the present. 3. We used GLM to model the distributions of three 'target' butterfly species, Melitaea didyma, Coenonympha tullia and Maculinea teleius, in Switzerland. We developed and compared four strategies for defining pools of pseudo-absence data and applied them to natural history collection data from the last 10, 30 and 100 years. Pools included: (i) sites without target species records; (ii) sites where butterfly species other than the target species were present; (iii) sites without butterfly species but with habitat characteristics similar to those required by the target species; and (iv) a combination of the second and third strategies. Models were evaluated and compared by the total deviance explained, the maximized Kappa and the area under the curve (AUC). 4. Among the four strategies, model performance was best for strategy 3. Contrary to expectations, strategy 2 resulted in even lower model performance compared with models with pseudo-absence data simulated totally at random (strategy 1). 5. Independent of the strategy model, performance was enhanced when sites with historical species presence data were not considered as pseudo-absence data. Therefore, the combination of strategy 3 with species records from the last 100 years achieved the highest model performance. 6. Synthesis and applications. The protection of suitable habitat for species survival or reintroduction in rapidly changing landscapes is a high priority among conservationists. Model-based approaches offer planning authorities the possibility of delimiting priority areas for species detection or habitat protection. The performance of these models can be enhanced by fitting them with pseudo-absence data relying on large archives of natural history collection species presence data rather than using randomly sampled pseudo-absence data.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Prediction of species' distributions is central to diverse applications in ecology, evolution and conservation science. There is increasing electronic access to vast sets of occurrence records in museums and herbaria, yet little effective guidance on how best to use this information in the context of numerous approaches for modelling distributions. To meet this need, we compared 16 modelling methods over 226 species from 6 regions of the world, creating the most comprehensive set of model comparisons to date. We used presence-only data to fit models, and independent presence-absence data to evaluate the predictions. Along with well-established modelling methods such as generalised additive models and GARP and BIOCLIM, we explored methods that either have been developed recently or have rarely been applied to modelling species' distributions. These include machine-learning methods and community models, both of which have features that may make them particularly well suited to noisy or sparse information, as is typical of species' occurrence data. Presence-only data were effective for modelling species' distributions for many species and regions. The novel methods consistently outperformed more established methods. The results of our analysis are promising for the use of data from museums and herbaria, especially as methods suited to the noise inherent in such data improve.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Data characteristics and species traits are expected to influence the accuracy with which species' distributions can be modeled and predicted. We compare 10 modeling techniques in terms of predictive power and sensitivity to location error, change in map resolution, and sample size, and assess whether some species traits can explain variation in model performance. We focused on 30 native tree species in Switzerland and used presence-only data to model current distribution, which we evaluated against independent presence-absence data. While there are important differences between the predictive performance of modeling methods, the variance in model performance is greater among species than among techniques. Within the range of data perturbations in this study, some extrinsic parameters of data affect model performance more than others: location error and sample size reduced performance of many techniques, whereas grain had little effect on most techniques. No technique can rescue species that are difficult to predict. The predictive power of species-distribution models can partly be predicted from a series of species characteristics and traits based on growth rate, elevational distribution range, and maximum elevation. Slow-growing species or species with narrow and specialized niches tend to be better modeled. The Swiss presence-only tree data produce models that are reliable enough to be useful in planning and management applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Failure to detect a species in an area where it is present is a major source of error in biological surveys. We assessed whether it is possible to optimize single-visit biological monitoring surveys of highly dynamic freshwater ecosystems by framing them a priori within a particular period of time. Alternatively, we also searched for the optimal number of visits and when they should be conducted. We developed single-species occupancy models to estimate the monthly probability of detection of pond-breeding amphibians during a four-year monitoring program. Our results revealed that detection probability was species-specific and changed among sampling visits within a breeding season and also among breeding seasons. Thereby, the optimization of biological surveys with minimal survey effort (a single visit) is not feasible as it proves impossible to select a priori an adequate sampling period that remains robust across years. Alternatively, a two-survey combination at the beginning of the sampling season yielded optimal results and constituted an acceptable compromise between sampling efficacy and survey effort. Our study provides evidence of the variability and uncertainty that likely affects the efficacy of monitoring surveys, highlighting the need of repeated sampling in both ecological studies and conservation management.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Summary: Amphibians are among the most vulnerable animals of the world. One third of all species are currently threatened with extinction. Habitat loss is the major menace to pond- and stream-breeding species in the old world. In highly urbanized landscape like the Swiss Plateau, most species suffer from habitat reduction and fragmentation. Among all indigenous species, the European tree frog (Hyla arborea L., 1758) is one of the most endangered. It experienced an alarming decline during the last century and its regional long-term persistence is not guaranteed. We developed a monitoring framework based on calling male counts which included multiple visits to each wetland during the reproduction period in order to precisely determine its distribution on the Lemanic coast. Our results indicate that visiting populations 3 limes under suitable climatic conditions (temperature >20°C) provides reliable presence/absence data. Based on our monitoring data, we analyzed the species requirements regarding its breeding habitat. It appeared that anthropogenic activities had paradoxical effects on the species. On one hand, urbanization, traffic and intensive agriculture had a strong detrimental effect on tree frog distribution. On the other hand, large tree frog populations were frequently associated with gravel pits and military training grounds. Our results allowed us to create a habitat suitability map taking into account detrimental landscape elements around ponds (>1100m away from urban areas and >500m away from first class roads). In parallel, we developed a metapopulation model of the European tree frog in order to identify the critical threats to the long term persistence of the species. Our results indicated that suitable pond density is at the low end of the species requirements. Pond creation must therefore be considered an essential complementary approach to pond conservation and restoration. Our model also provided a mapping solution permitting the location of the must suitable area for pond creation from a metapopulation perspective. As many other amphibians, the European tree frog is not only exposed to an aquatic habitat (breeding and larval period), but also to a terrestrial stage (summer and overwintering habitats). Unfortunately, animals in their terrestrial phase are less conspicuous and, as a consequence, their terrestrial needs are relatively unknown. Using a recent tracking method (the Harmonic Direction Finder), we followed post-breeding frogs and identified favored terrestrial habitats, thus providing another practical conservation tool. We conclude that only the combination of multiple spatially explicit approaches (landscape-scale habitat suitability, metapopulation dynamics and terrestrial needs) is likely to provide wildlife managers with effective tools for the conservation of highly endangered amphibians. Résumé: Les amphibiens font partie des animaux les plus vulnérables du monde. Un tiers des espèces est actuellement menacé d'extinction. Dans l'ancien monde, la disparition des habitats constitue la principale menace pour les grenouilles, crapauds, tritons et salamandres. Dans les paysages fortement urbanisés comme le Plateau Suisse, la plupart des espèces souffrent d'une réduction et d'une fragmentation de leurs habitats. Parmi toutes les espèces indigènes, la rainette verte (Hyla arborea L., 1758) est l'une des plus menacée. Sa distribution a régressé de manière alarmante durant le siècle passé et sa survie régionale à long terme n'est pas assurée. Nous avons développé une méthode de suivi des populations se basant sur le comptage des mâles chanteurs durant la période de reproduction. Cette méthode requiert plusieurs visites à chaque plan d'eau de manière à déterminer précisément la distribution de l'espèce. Nos résultats démontrent que 3 visites par population dans des conditions climatiques favorable (température >20°C) permettent d'obtenir des données de présence/ absence valables. Sur la base de nos comptages sur la Côte lémanique, nous avons analysé les exigences de l'espèce concernant ses sites de reproduction. Il est apparu que les activités humaines avaient un effet paradoxal sur l'espèce. D'une part, l'urbanisation, le trafic routier et l'intensification de l'agriculture ont un effet fortement préjudiciable, tandis que d'autre part les plus grandes populations sont souvent associées à des gravières et autres places d'armes. Nos résultats ont permis de créer une carte de qualité d'habitat prenant en compte les éléments paysagers préjudiciables à la rainette (situé à plus de 1100m de zones urbaines et à plus de 500m de routes de première classe). En parallèle, nous avons développé un modèle métapopulationnel (incluant l'ensemble des populations) de manière à identifier les menaces prépondérantes sur la survie à long terme de l'espèce. Nos résultats ont permis de déterminer que la densité actuelle de plans d'eau adéquats est à la limite inférieure des exigences de l'espèce. La création d'étangs doit donc être considérée comme une approche indispensable et complémentaire à la protection et à la restauration des sites existants. Notre modèle a également fourni des résultats cartographiables permettant l'identification des sites les plus appropriés dans une perspective métapopulationnelle. Comme de nombreux autres amphibiens, la rainette verte est exposée à un habitat aquatique (reproduction et développement larvaire) ainsi qu'à un habitat terrestre (été et hiver). Les animaux étant particulièrement cryptiques dans cette seconde phase, leurs besoins terrestres sont relativement mal connus. Nous avons donc développé une nouvelle méthode de télémétrie basée sur le goniomètre harmonique. Cette méthode nous a permis de suivre des rainettes dans leurs migrations jusqu'à leurs habitats d'été et d'établir ainsi des recommandations pratiques pour la conservation de la rainette. Nous concluons que la combinaison de multiples approches spatialement explicites (qualité d'habitat, dynamique de métapopulation et habitats terrestres) est seule à même de produire des outils efficaces pour la conservation des espèces menacées d'amphibiens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aim, Location Although the alpine mouse Apodemus alpicola has been given species status since 1989, no distribution map has ever been constructed for this endemic alpine rodent in Switzerland. Based on redetermined museum material and using the Ecological-Niche Factor Analysis (ENFA), habitat-suitability maps were computed for A. alpicola, and also for the co-occurring A. flavicollis and A. sylvaticus. Methods In the particular case of habitat suitability models, classical approaches (GLMs, GAMs, discriminant analysis, etc.) generally require presence and absence data. The presence records provided by museums can clearly give useful information about species distribution and ecology and have already been used for knowledge-based mapping. In this paper, we apply the ENFA which requires only presence data, to build a habitat-suitability map of three species of Apodemus on the basis of museum skull collections. Results Interspecific niche comparisons showed that A. alpicola is very specialized concerning habitat selection, meaning that its habitat differs unequivocally from the average conditions in Switzerland, while both A. flavicollis and A. sylvaticus could be considered as 'generalists' in the study area. Main conclusions Although an adequate sampling design is the best way to collect ecological data for predictive modelling, this is a time and money consuming process and there are cases where time is simply not available, as for instance with endangered species conservation. On the other hand, museums, herbariums and other similar institutions are treasuring huge presence data sets. By applying the ENFA to such data it is possible to rapidly construct a habitat suitability model. The ENFA method not only provides two key measurements regarding the niche of a species (i.e. marginality and specialization), but also has ecological meaning, and allows the scientist to compare directly the niches of different species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract : The existence of a causal relationship between the spatial distribution of living organisms and their environment, in particular climate, has been long recognized and is the central principle of biogeography. In turn, this recognition has led scientists to the idea of using the climatic, topographic, edaphic and biotic characteristics of the environment to predict its potential suitability for a given species or biological community. In this thesis, my objective is to contribute to the development of methodological improvements in the field of species distribution modeling. More precisely, the objectives are to propose solutions to overcome limitations of species distribution models when applied to conservation biology issues, or when .used as an assessment tool of the potential impacts of global change. The first objective of my thesis is to contribute to evidence the potential of species distribution models for conservation-related applications. I present a methodology to generate pseudo-absences in order to overcome the frequent lack of reliable absence data. I also demonstrate, both theoretically (simulation-based) and practically (field-based), how species distribution models can be successfully used to model and sample rare species. Overall, the results of this first part of the thesis demonstrate the strong potential of species distribution models as a tool for practical applications in conservation biology. The second objective this thesis is to contribute to improve .projections of potential climate change impacts on species distributions, and in particular for mountain flora. I develop and a dynamic model, MIGCLIM, that allows the implementation of dispersal limitations into classic species distribution models and present an application of this model to two virtual species. Given that accounting for dispersal limitations requires information on seed dispersal, distances, a general methodology to classify species into broad dispersal types is also developed. Finally, the M~GCLIM model is applied to a large number of species in a study area of the western Swiss Alps. Overall, the results indicate that while dispersal limitations can have an important impact on the outcome of future projections of species distributions under climate change scenarios, estimating species threat levels (e.g. species extinction rates) for a mountainous areas of limited size (i.e. regional scale) can also be successfully achieved when considering dispersal as unlimited (i.e. ignoring dispersal limitations, which is easier from a practical point of view). Finally, I present the largest fine scale assessment of potential climate change impacts on mountain vegetation that has been carried-out to date. This assessment involves vegetation from 12 study areas distributed across all major western and central European mountain ranges. The results highlight that some mountain ranges (the Pyrenees and the Austrian Alps) are expected to be more affected by climate change than others (Norway and the Scottish Highlands). The results I obtain in this study also indicate that the threat levels projected by fine scale models are less severe than those derived from coarse scale models. This result suggests that some species could persist in small refugias that are not detected by coarse scale models. Résumé : L'existence d'une relation causale entre la répartition des espèces animales et végétales et leur environnement, en particulier le climat, a été mis en évidence depuis longtemps et est un des principes centraux en biogéographie. Ce lien a naturellement conduit à l'idée d'utiliser les caractéristiques climatiques, topographiques, édaphiques et biotiques de l'environnement afin d'en prédire la qualité pour une espèce ou une communauté. Dans ce travail de thèse, mon objectif est de contribuer au développement d'améliorations méthodologiques dans le domaine de la modélisation de la distribution d'espèces dans le paysage. Plus précisément, les objectifs sont de proposer des solutions afin de surmonter certaines limitations des modèles de distribution d'espèces dans des applications pratiques de biologie de la conservation ou dans leur utilisation pour évaluer l'impact potentiel des changements climatiques sur l'environnement. Le premier objectif majeur de mon travail est de contribuer à démontrer le potentiel des modèles de distribution d'espèces pour des applications pratiques en biologie de la conservation. Je propose une méthode pour générer des pseudo-absences qui permet de surmonter le problème récurent du manque de données d'absences fiables. Je démontre aussi, de manière théorique (par simulation) et pratique (par échantillonnage de terrain), comment les modèles de distribution d'espèces peuvent être utilisés pour modéliser et améliorer l'échantillonnage des espèces rares. Ces résultats démontrent le potentiel des modèles de distribution d'espèces comme outils pour des applications de biologie de la conservation. Le deuxième objectif majeur de ce travail est de contribuer à améliorer les projections d'impacts potentiels des changements climatiques sur la flore, en particulier dans les zones de montagnes. Je développe un modèle dynamique de distribution appelé MigClim qui permet de tenir compte des limitations de dispersion dans les projections futures de distribution potentielle d'espèces, et teste son application sur deux espèces virtuelles. Vu que le fait de prendre en compte les limitations dues à la dispersion demande des données supplémentaires importantes (p.ex. la distance de dispersion des graines), ce travail propose aussi une méthode de classification simplifiée des espèces végétales dans de grands "types de disperseurs", ce qui permet ainsi de d'obtenir de bonnes approximations de distances de dispersions pour un grand nombre d'espèces. Finalement, j'applique aussi le modèle MIGCLIM à un grand nombre d'espèces de plantes dans une zone d'études des pré-Alpes vaudoises. Les résultats montrent que les limitations de dispersion peuvent avoir un impact considérable sur la distribution potentielle d'espèces prédites sous des scénarios de changements climatiques. Cependant, quand les modèles sont utilisés pour évaluer les taux d'extinction d'espèces dans des zones de montages de taille limitée (évaluation régionale), il est aussi possible d'obtenir de bonnes approximations en considérant la dispersion des espèces comme illimitée, ce qui est nettement plus simple d'un point dé vue pratique. Pour terminer je présente la plus grande évaluation à fine échelle d'impact potentiel des changements climatiques sur la flore des montagnes conduite à ce jour. Cette évaluation englobe 12 zones d'études réparties sur toutes les chaines de montages principales d'Europe occidentale et centrale. Les résultats montrent que certaines chaines de montagnes (les Pyrénées et les Alpes Autrichiennes) sont projetées comme plus sensibles aux changements climatiques que d'autres (les Alpes Scandinaves et les Highlands d'Ecosse). Les résultats obtenus montrent aussi que les modèles à échelle fine projettent des impacts de changement climatiques (p. ex. taux d'extinction d'espèces) moins sévères que les modèles à échelle large. Cela laisse supposer que les modèles a échelle fine sont capables de modéliser des micro-niches climatiques non-détectées par les modèles à échelle large.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Summary Landscapes are continuously changing. Natural forces of change such as heavy rainfall and fires can exert lasting influences on their physical form. However, changes related to human activities have often shaped landscapes more distinctly. In Western Europe, especially modern agricultural practices and the expanse of overbuilt land have left their marks in the landscapes since the middle of the 20th century. In the recent years men realised that mare and more changes that were formerly attributed to natural forces might indirectly be the result of their own action. Perhaps the most striking landscape change indirectly driven by human activity we can witness in these days is the large withdrawal of Alpine glaciers. Together with the landscapes also habitats of animal and plant species have undergone vast and sometimes rapid changes that have been hold responsible for the ongoing loss of biodiversity. Thereby, still little knowledge is available about probable effects of the rate of landscape change on species persistence and disappearance. Therefore, the development and speed of land use/land cover in the Swiss communes between the 1950s and 1990s were reconstructed using 10 parameters from agriculture and housing censuses, and were further correlated with changes in butterfly species occurrences. Cluster analyses were used to detect spatial patterns of change on broad spatial scales. Thereby, clusters of communes showing similar changes or transformation rates were identified for single decades and put into a temporally dynamic sequence. The obtained picture on the changes showed a prevalent replacement of non-intensive agriculture by intensive practices, a strong spreading of urban communes around city centres, and transitions towards larger farm sizes in the mountainous areas. Increasing transformation rates toward more intensive agricultural managements were especially found until the 1970s, whereas afterwards the trends were commonly negative. However, transformation rates representing the development of residential buildings showed positive courses at any time. The analyses concerning the butterfly species showed that grassland species reacted sensitively to the density of livestock in the communes. This might indicate the augmented use of dry grasslands as cattle pastures that show altered plant species compositions. Furthermore, these species also decreased in communes where farms with an agricultural area >5ha have disappeared. The species of the wetland habitats were favoured in communes with smaller fractions of agricultural areas and lower densities of large farms (>10ha) but did not show any correlation to transformation rates. It was concluded from these analyses that transformation rates might influence species disappearance to a certain extent but that states of the environmental predictors might generally outweigh the importance of the corresponding rates. Information on the current distribution of species is evident for nature conservation. Planning authorities that define priority areas for species protection or examine and authorise construction projects need to know about the spatial distribution of species. Hence, models that simulate the potential spatial distribution of species have become important decision tools. The underlying statistical analyses such as the widely used generalised linear models (GLM) often rely on binary species presence-absence data. However, often only species presence data have been colleted, especially for vagrant, rare or cryptic species such as butterflies or reptiles. Modellers have thus introduced randomly selected absence data to design distribution models. Yet, selecting false absence data might bias the model results. Therefore, we investigated several strategies to select more reliable absence data to model the distribution of butterfly species based on historical distribution data. The results showed that better models were obtained when historical data from longer time periods were considered. Furthermore, model performance was additionally increased when long-term data of species that show similar habitat requirements as the modelled species were used. This successful methodological approach was further applied to assess consequences of future landscape changes on the occurrence of butterfly species inhabiting dry grasslands or wetlands. These habitat types have been subjected to strong deterioration in the recent decades, what makes their protection a future mission. Four spatially explicit scenarios that described (i) ongoing land use changes as observed between 1985 and 1997, (ii) liberalised agricultural markets, and (iii) slightly and (iv) strongly lowered agricultural production provided probable directions of landscape change. Current species-environment relationships were derived from a statistical model and used to predict future occurrence probabilities in six major biogeographical regions in Switzerland, comprising the Jura Mountains, the Plateau, the Northern and Southern Alps, as well as the Western and Eastern Central Alps. The main results were that dry grasslands species profited from lowered agricultural production, whereas overgrowth of open areas in the liberalisation scenario might impair species occurrence. The wetland species mostly responded with decreases in their occurrence probabilities in the scenarios, due to a loss of their preferred habitat. Further analyses about factors currently influencing species occurrences confirmed anthropogenic causes such as urbanisation, abandonment of open land, and agricultural intensification. Hence, landscape planning should pay more attention to these forces in areas currently inhabited by these butterfly species to enable sustainable species persistence. In this thesis historical data were intensively used to reconstruct past developments and to make them useful for current investigations. Yet, the availability of historical data and the analyses on broader spatial scales has often limited the explanatory power of the conducted analyses. Meaningful descriptors of former habitat characteristics and abundant species distribution data are generally sparse, especially for fine scale analyses. However, this situation can be ameliorated by broadening the extent of the study site and the used grain size, as was done in this thesis by considering the whole of Switzerland with its communes. Nevertheless, current monitoring projects and data recording techniques are promising data sources that might allow more detailed analyses about effects of long-term species reactions on landscape changes in the near future. This work, however, also showed the value of historical species distribution data as for example their potential to locate still unknown species occurrences. The results might therefore contribute to further research activities that investigate current and future species distributions considering the immense richness of historical distribution data. Résumé Les paysages changent continuellement. Des farces naturelles comme des pluies violentes ou des feux peuvent avoir une influence durable sur la forme du paysage. Cependant, les changements attribués aux activités humaines ont souvent modelé les paysages plus profondément. Depuis les années 1950 surtout, les pratiques agricoles modernes ou l'expansion des surfaces d'habitat et d'infrastructure ont caractérisé le développement du paysage en Europe de l'Ouest. Ces dernières années, l'homme a commencé à réaliser que beaucoup de changements «naturels » pourraient indirectement résulter de ses propres activités. Le changement de paysage le plus apparent dont nous sommes témoins de nos jours est probablement l'immense retraite des glaciers alpins. Avec les paysages, les habitats des animaux et des plantes ont aussi été exposés à des changements vastes et quelquefois rapides, tenus pour coresponsable de la continuelle diminution de la biodiversité. Cependant, nous savons peu des effets probables de la rapidité des changements du paysage sur la persistance et la disparition des espèces. Le développement et la rapidité du changement de l'utilisation et de la couverture du sol dans les communes suisses entre les années 50 et 90 ont donc été reconstruits au moyen de 10 variables issues des recensements agricoles et résidentiels et ont été corrélés avec des changements de présence des papillons diurnes. Des analyses de groupes (Cluster analyses) ont été utilisées pour détecter des arrangements spatiaux de changements à l'échelle de la Suisse. Des communes avec des changements ou rapidités comparables ont été délimitées pour des décennies séparées et ont été placées en séquence temporelle, en rendrent une certaine dynamique du changement. Les résultats ont montré un remplacement répandu d'une agriculture extensive des pratiques intensives, une forte expansion des faubourgs urbains autour des grandes cités et des transitions vers de plus grandes surfaces d'exploitation dans les Alpes. Dans le cas des exploitations agricoles, des taux de changement croissants ont été observés jusqu'aux années 70, alors que la tendance a généralement été inversée dans les années suivantes. Par contre, la vitesse de construction des nouvelles maisons a montré des courbes positives pendant les 50 années. Les analyses sur la réaction des papillons diurnes ont montré que les espèces des prairies sèches supportaient une grande densité de bétail. Il est possible que dans ces communes beaucoup des prairies sèches aient été fertilisées et utilisées comme pâturages, qui ont une autre composition floristique. De plus, les espèces ont diminué dans les communes caractérisées par une rapide perte des fermes avec une surface cultivable supérieure à 5 ha. Les espèces des marais ont été favorisées dans des communes avec peu de surface cultivable et peu de grandes fermes, mais n'ont pas réagi aux taux de changement. Il en a donc été conclu que la rapidité des changements pourrait expliquer les disparitions d'espèces dans certains cas, mais que les variables prédictives qui expriment des états pourraient être des descripteurs plus importants. Des informations sur la distribution récente des espèces sont importantes par rapport aux mesures pour la conservation de la nature. Pour des autorités occupées à définir des zones de protection prioritaires ou à autoriser des projets de construction, ces informations sont indispensables. Les modèles de distribution spatiale d'espèces sont donc devenus des moyens de décision importants. Les méthodes statistiques courantes comme les modèles linéaires généralisés (GLM) demandent des données de présence et d'absence des espèces. Cependant, souvent seules les données de présence sont disponibles, surtout pour les animaux migrants, rares ou cryptiques comme des papillons ou des reptiles. C'est pourquoi certains modélisateurs ont choisi des absences au hasard, avec le risque d'influencer le résultat en choisissant des fausses absences. Nous avons établi plusieurs stratégies, basées sur des données de distribution historique des papillons diurnes, pour sélectionner des absences plus fiables. Les résultats ont démontré que de meilleurs modèles pouvaient être obtenus lorsque les données proviennent des périodes de temps plus longues. En plus, la performance des modèles a pu être augmentée en considérant des données de distribution à long terme d'espèces qui occupent des habitats similaires à ceux de l'espèce cible. Vu le succès de cette stratégie, elle a été utilisée pour évaluer les effets potentiels des changements de paysage futurs sur la distribution des papillons des prairies sèches et marais, deux habitats qui ont souffert de graves détériorations. Quatre scénarios spatialement explicites, décrivant (i) l'extrapolation des changements de l'utilisation de sol tels qu'observés entre 1985 et 1997, (ii) la libéralisation des marchés agricoles, et une production agricole (iii) légèrement amoindrie et (iv) fortement diminuée, ont été utilisés pour générer des directions de changement probables. Les relations actuelles entre la distribution des espèces et l'environnement ont été déterminées par le biais des modèles statistiques et ont été utilisées pour calculer des probabilités de présence selon les scénarios dans six régions biogéographiques majeures de la Suisse, comportant le Jura, le Plateau, les Alpes du Nord, du Sud, centrales orientales et centrales occidentales. Les résultats principaux ont montré que les espèces des prairies sèches pourraient profiter d'une diminution de la production agricole, mais qu'elles pourraient aussi disparaître à cause de l'embroussaillement des terres ouvertes dû à la libéralisation des marchés agricoles. La probabilité de présence des espèces de marais a décrû à cause d'une perte générale des habitats favorables. De plus, les analyses ont confirmé que des causes humaines comme l'urbanisation, l'abandon des terres ouvertes et l'intensification de l'agriculture affectent actuellement ces espèces. Ainsi ces forces devraient être mieux prises en compte lors de planifications paysagères, pour que ces papillons diurnes puissent survivre dans leurs habitats actuels. Dans ce travail de thèse, des données historiques ont été intensivement utilisées pour reconstruire des développements anciens et pour les rendre utiles à des recherches contemporaines. Cependant, la disponibilité des données historiques et les analyses à grande échelle ont souvent limité le pouvoir explicatif des analyses. Des descripteurs pertinents pour caractériser les habitats anciens et des données suffisantes sur la distribution des espèces sont généralement rares, spécialement pour des analyses à des échelles fores. Cette situation peut être améliorée en augmentant l'étendue du site d'étude et la résolution, comme il a été fait dans cette thèse en considérant toute la Suisse avec ses communes. Cependant, les récents projets de surveillance et les techniques de collecte de données sont des sources prometteuses, qui pourraient permettre des analyses plus détaillés sur les réactions à long terme des espèces aux changements de paysage dans le futur. Ce travail a aussi montré la valeur des anciennes données de distribution, par exemple leur potentiel pour aider à localiser des' présences d'espèces encore inconnues. Les résultats peuvent contribuer à des activités de recherche à venir, qui étudieraient les distributions récentes ou futures d'espèces en considérant l'immense richesse des données de distribution historiques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. Identifying those areas suitable for recolonization by threatened species is essential to support efficient conservation policies. Habitat suitability models (HSM) predict species' potential distributions, but the quality of their predictions should be carefully assessed when the species-environment equilibrium assumption is violated.2. We studied the Eurasian otter Lutra lutra, whose numbers are recovering in southern Italy. To produce widely applicable results, we chose standard HSM procedures and looked for the models' capacities in predicting the suitability of a recolonization area. We used two fieldwork datasets: presence-only data, used in the Ecological Niche Factor Analyses (ENFA), and presence-absence data, used in a Generalized Linear Model (GLM). In addition to cross-validation, we independently evaluated the models with data from a recolonization event, providing presences on a previously unoccupied river.3. Three of the models successfully predicted the suitability of the recolonization area, but the GLM built with data before the recolonization disagreed with these predictions, missing the recolonized river's suitability and badly describing the otter's niche. Our results highlighted three points of relevance to modelling practices: (1) absences may prevent the models from correctly identifying areas suitable for a species spread; (2) the selection of variables may lead to randomness in the predictions; and (3) the Area Under Curve (AUC), a commonly used validation index, was not well suited to the evaluation of model quality, whereas the Boyce Index (CBI), based on presence data only, better highlighted the models' fit to the recolonization observations.4. For species with unstable spatial distributions, presence-only models may work better than presence-absence methods in making reliable predictions of suitable areas for expansion. An iterative modelling process, using new occurrences from each step of the species spread, may also help in progressively reducing errors.5. Synthesis and applications. Conservation plans depend on reliable models of the species' suitable habitats. In non-equilibrium situations, such as the case for threatened or invasive species, models could be affected negatively by the inclusion of absence data when predicting the areas of potential expansion. Presence-only methods will here provide a better basis for productive conservation management practices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims: To assess the potential distribution of an obligate seeder and active pyrophyte, Cistus salviifolius, a vulnerable species in the Swiss Red List; to derive scenarios by changing the fire return interval; and to discuss the results from a conservation perspective. A more general aim is to assess the impact of fire as a natural factor influencing the vegetation of the southern slopes of the Alps. Locations: Alps, southern Switzerland. Methods: Presence-absence data to fit the model were obtained from the most recent field mapping of C. salviifolius. The quantitative environmental predictors used in this study include topographic, climatic and disturbance (fire) predictors. Models were fitted by logistic regression and evaluated by jackknife and bootstrap approaches. Changes in fire regime were simulated by increasing the time-return interval of fire (simulating longer periods without fire). Two scenarios were considered: no fire in the past 15 years; or in the past 35 years. Results: Rock cover, slope, topographic position, potential evapotranspiration and time elapsed since the last fire were selected in the final model. The Nagelkerke R-2 of the model for C. salviifolius was 0.57 and the Jackknife area under the curve evaluation was 0.89. The bootstrap evaluation revealed model robustness. By increasing the return interval of fire by either up to 15 years, or 35 years, the modelled C. salviifolius population declined by 30-40%, respectively. Main conclusions: Although fire plays a significant role, topography and rock cover appear to be the most important predictors, suggesting that the distribution of C. salviifolius in the southern Swiss Alps is closely related to the availability of supposedly competition-free sites, such as emerging bedrock, ridge locations or steep slopes. Fire is more likely to play a secondary role in allowing C. salviifolius to extend its occurrence temporarily, by increasing germination rates and reducing the competition from surrounding vegetation. To maintain a viable dormant seed bank for C. salviifolius, conservation managers should consider carrying out vegetation clearing and managing wild fire propagation to reduce competition and ensure sufficient recruitment for this species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aim: Climatic niche modelling of species and community distributions implicitly assumes strong and constant climatic determinism across geographic space. This assumption had however never been tested so far. We tested it by assessing how stacked-species distribution models (S-SDMs) perform for predicting plant species assemblages along elevation. Location: Western Swiss Alps. Methods: Using robust presence-absence data, we first assessed the ability of topo-climatic S-SDMs to predict plant assemblages in a study area encompassing a 2800 m wide elevation gradient. We then assessed the relationships among several evaluation metrics and trait-based tests of community assembly rules. Results: The standard errors of individual SDMs decreased significantly towards higher elevations. Overall, the S-SDM overpredicted far more than they underpredicted richness and could not reproduce the humpback curve along elevation. Overprediction was greater at low and mid-range elevations in absolute values but greater at high elevations when standardised by the actual richness. Looking at species composition, the evaluation metrics accounting for both the presence and absence of species (overall prediction success and kappa) or focusing on correctly predicted absences (specificity) increased with increasing elevation, while the metrics focusing on correctly predicted presences (Jaccard index and sensitivity) decreased. The best overall evaluation - as driven by specificity - occurred at high elevation where species assemblages were shown to be under significant environmental filtering of small plants. In contrast, the decreased overall accuracy in the lowlands was associated with functional patterns representing any type of assembly rule (environmental filtering, limiting similarity or null assembly). Main Conclusions: Our study reveals interesting patterns of change in S-SDM errors with changes in assembly rules along elevation. Yet, significant levels of assemblage prediction errors occurred throughout the gradient, calling for further improvement of SDMs, e.g., by adding key environmental filters that act at fine scales and developing approaches to account for variations in the influence of predictors along environmental gradients.