45 resultados para 3D printing,steel bars,calibration of design values,correlation
Resumo:
The sensitivity of altitudinal and latitudinal tree-line ecotones to climate change, particularly that of temperature, has received much attention. To improve our understanding of the factors affecting tree-line position, we used the spatially explicit dynamic forest model TreeMig. Although well-suited because of its landscape dynamics functions, TreeMig features a parabolic temperature growth response curve, which has recently been questioned. and the species parameters are not specifically calibrated for cold temperatures. Our main goals were to improve the theoretical basis of the temperature growth response curve in the model and develop a method for deriving that curve's parameters from tree-ring data. We replaced the parabola with an asymptotic curve, calibrated for the main species at the subalpine (Swiss Alps: Pinus cembra, Larix decidua, Picea abies) and boreal (Fennoscandia: Pinus sylvestris, Betula pubescens, P. abies) tree-lines. After fitting new parameters, the growth curve matched observed tree-ring widths better. For the subalpine species, the minimum degree-day sum allowing, growth (kDDMin) was lowered by around 100 degree-days; in the case of Larix, the maximum potential ring-width was increased to 5.19 mm. At the boreal tree-line, the kDDMin for P. sylvestris was lowered by 210 degree-days and its maximum ring-width increased to 2.943 mm; for Betula (new in the model) kDDMin was set to 325 degree-days and the maximum ring-width to 2.51 mm; the values from the only boreal sample site for Picea were similar to the subalpine ones, so the same parameters were used. However, adjusting the growth response alone did not improve the model's output concerning species' distributions and their relative importance at tree-line. Minimum winter temperature (MinWiT, mean of the coldest winter month), which controls seedling establishment in TreeMig, proved more important for determining distribution. Picea, P. sylvestris and Betula did not previously have minimum winter temperature limits, so these values were set to the 95th percentile of each species' coldest MinWiT site (respectively -7, -11, -13). In a case study for the Alps, the original and newly calibrated versions of TreeMig were compared with biomass data from the National Forest Inventor), (NFI). Both models gave similar, reasonably realistic results. In conclusion, this method of deriving temperature responses from tree-rings works well. However, regeneration and its underlying factors seem more important for controlling species' distributions than previously thought. More research on regeneration ecology, especially at the upper limit of forests. is needed to improve predictions of tree-line responses to climate change further.
Resumo:
In Switzerland, individuals exposed to the risk of activity intake are required to perform regular monitoring. Monitoring consists in a screening measurement and is meant to be performed using commonly available laboratory instruments. More particularly, iodine intake is measured using a surface contamination monitor. The goal of the present paper is to report the calibration method developed for thyroid screening instruments. It consists of measuring the instrument response to a known activity located in the thyroid gland of a standard neck phantom. One issue of this procedure remains that the iodine radioisotopes have a short half-life. Therefore, the adequacy and limitations to simulate the short-lived radionuclides with so-called mock radionuclides of longer half-life were also evaluated. In light of the results, it has been decided to use only the appropriate iodine sources to perform the calibration.
Resumo:
BACKGROUND: Prevention of cardiovascular disease (CVD) at the individual level should rely on the assessment of absolute risk using population-specific risk tables. OBJECTIVE: To compare the predictive accuracy of the original and the calibrated SCORE functions regarding 10-year cardiovascular risk in Switzerland. DESIGN: Cross-sectional, population-based study (5773 participants aged 35-74 years). METHODS: The SCORE equation for low-risk countries was calibrated based on the Swiss CVD mortality rates and on the CVD risk factor levels from the study sample. The predicted number of CVD deaths after a 10-year period was computed from the original and the calibrated equations and from the observed cardiovascular mortality for 2003. RESULTS: According to the original and calibrated functions, 16.3 and 15.8% of men and 8.2 and 8.9% of women, respectively, had a 10-year CVD risk > or =5%. Concordance correlation coefficient between the two functions was 0.951 for men and 0.948 for women, both P<0.001. Both risk functions adequately predicted the 10-year cumulative number of CVD deaths: in men, 71 (original) and 74 (calibrated) deaths for 73 deaths when using the CVD mortality rates; in women, 44 (original), 45 (calibrated) and 45 (CVD mortality rates), respectively. Compared to the original function, the calibrated function classified more women and fewer men at high-risk. Moreover, the calibrated function gave better risk estimates among participants aged over 65 years. CONCLUSION: The original SCORE function adequately predicts CVD death in Switzerland, particularly for individuals aged less than 65 years. The calibrated function provides more reliable estimates for older individuals.
Resumo:
The calculation of elasticity parameters by sonic and ultra sonic wave propagation in saturated soils using Biot's theory needs the following variables : forpiation density and porosity (p, ø), compressional and shear wave velocities (Vp, Vs), fluid density, viscosity and compressibility (Pfi Ilfi Ki), matrix density and compressibility (p" K), The first four parameters can be determined in situ using logging probes. Because fluid and matrix characteristics are not modified during core extraction, they can be obtained through laboratory measurements. All parameters necessitate precise calibrations in various environments and for specific range of values encountered in soils. The slim diameter of boreholes in shallow geophysics and the high cost of petroleum equipment demand the use of specific probes, which usually only give qualitative results. The measurement 'of density is done with a gamma-gamma probe and the measurement of hydrogen index, in relation to porosity, by a neutron probe. The first step of this work has been carried out in synthetic formations in the laboratory using homogeneous media of known density and porosity. To establish borehole corrections different casings have been used. Finally a comparison between laboratory and in situ data in cored holes of known geometry and casing has been performed.
Resumo:
During conventional x-ray coronary angiography, multiple projections of the coronary arteries are acquired to define coronary anatomy precisely. Due to time constraints, coronary magnetic resonance angiography (MRA) usually provides only one or two views of the major coronary vessels. A coronary MRA approach that allowed for reconstruction of arbitrary isotropic orientations might therefore be desirable. The purpose of the study was to develop a three-dimensional (3D) coronary MRA technique with isotropic image resolution in a relatively short scanning time that allows for reconstruction of arbitrary views of the coronary arteries without constraints given by anisotropic voxel size. Eight healthy adult subjects were examined using a real-time navigator-gated and corrected free-breathing interleaved echoplanar (TFE-EPI) 3D-MRA sequence. Two 3D datasets were acquired for the left and right coronary systems in each subject, one with anisotropic (1.0 x 1.5 x 3.0 mm, 10 slices) and one with "near" isotropic (1.0 x 1.5 x 1.0 mm, 30 slices) image resolution. All other imaging parameters were maintained. In all cases, the entire left main (LM) and extensive portions of the left anterior descending (LAD) and the right coronary artery (RCA) were visualized. Objective assessment of coronary vessel sharpness was similar (41% +/- 5% vs. 42% +/- 5%; P = NS) between in-plane and through-plane views with "isotropic" voxel size but differed (32% +/- 7% vs. 23% +/- 4%; P < 0.001) with nonisotropic voxel size. In reconstructed views oriented in the through-plane direction, the vessel border was 86% more defined (P < 0.01) for isotropic compared with anisotropic images. A smaller (30%; P < 0.001) improvement was seen for in-plane reconstructions. Vessel diameter measurements were view independent (2.81 +/- 0.45 mm vs. 2.66 +/- 0.52 mm; P = NS) for isotropic, but differed (2.71 +/- 0.51 mm vs. 3.30 +/- 0.38 mm; P < 0.001) between anisotropic views. Average scanning time was 2:31 +/- 0:57 minutes for anisotropic and 7:11 +/- 3:02 minutes for isotropic image resolution (P < 0.001). We present a new approach for "near" isotropic 3D coronary artery imaging, which allows for reconstruction of arbitrary views of the coronary arteries. The good delineation of the coronary arteries in all views suggests that isotropic 3D coronary MRA might be a preferred technique for the assessment of coronary disease, although at the expense of prolonged scan times. Comparative studies with conventional x-ray angiography are needed to investigate the clinical utility of the isotropic strategy.
Resumo:
BACKGROUND: Management of blood pressure (BP) in acute ischemic stroke is controversial. The present study aims to explore the association between baseline BP levels and BP change and outcome in the overall stroke population and in specific subgroups with regard to the presence of arterial hypertensive disease and prior antihypertensive treatment. METHODS: All patients registered in the Acute STroke Registry and Analysis of Lausanne (ASTRAL) between 2003 and 2009 were analyzed. Unfavorable outcome was defined as modified Rankin score more than 2. A local polynomial surface algorithm was used to assess the effect of BP values on outcome in the overall population and in predefined subgroups. RESULTS: Up to a certain point, as initial BP was increasing, optimal outcome was seen with a progressively more substantial BP decrease over the next 24-48 h. Patients without hypertensive disease and an initially low BP seemed to benefit from an increase of BP. In patients with hypertensive disease, initial BP and its subsequent changes seemed to have less influence on clinical outcome. Patients who were previously treated with antihypertensives did not tolerate initially low BPs well. CONCLUSION: Optimal outcome in acute ischemic stroke may be determined not only by initial BP levels but also by the direction and magnitude of associated BP change over the first 24-48 h.
Resumo:
An accurate sense of time contributes to functions ranging from the perception and anticipation of sensory events to the production of coordinated movements. However, accumulating evidence demonstrates that time perception is subject to strong illusory distortion. In two experiments, we investigated whether the subjective speed of temporal perception is dependent on our visual environment. By presenting human observers with speed-altered movies of a crowded street scene, we modulated performance on subsequent production of "20s" elapsed intervals. Our results indicate that one's visual environment significantly contributes to calibrating our sense of time, independently of any modulation of arousal. This plasticity generates an assay for the integrity of our sense of time and its rehabilitation in clinical pathologies.
Resumo:
Despite abundant research on work meaningfulness, the link between work meaningfulness and general ethical attitude at work has not been discussed so far. In this article, we propose a theoretical framework to explain how work meaningfulness contributes to enhanced ethical behavior. We argue that by providing a way for individuals to relate work to one's personal core values and identity, work meaningfulness leads to affective commitment - the involvement of one's cognitive, emotional, and physical resources. This, in turn, leads to engagement and so facilitates the integration of one's personal values in the daily work routines, and so reduces the risk of unethical behavior. On the contrary, anomie, that is, the absence of meaning and consequently of personal involvement, will lead to lower rational commitment rather than affective commitment, and consequently to disengagement and a-morality. We conclude with implications for the management of ethical attitudes.
Resumo:
In this article we introduce JULIDE, a software toolkit developed to perform the 3D reconstruction, intensity normalization, volume standardization by 3D image registration and voxel-wise statistical analysis of autoradiographs of mouse brain sections. This software tool has been developed in the open-source ITK software framework and is freely available under a GPL license. The article presents the complete image processing chain from raw data acquisition to 3D statistical group analysis. Results of the group comparison in the context of a study on spatial learning are shown as an illustration of the data that can be obtained with this tool.
Resumo:
Review of the book: The Tinkerer's Accomplice: How Design Emerges From Life Itself by J. Scott TurnerHarvard University Press: 2007. 304 pp.
Resumo:
Relationships between porosity and hydraulic conductivity tend to be strongly scale- and site-dependent and are thus very difficult to establish. As a result, hydraulic conductivity distributions inferred from geophysically derived porosity models must be calibrated using some measurement of aquifer response. This type of calibration is potentially very valuable as it may allow for transport predictions within the considered hydrological unit at locations where only geophysical measurements are available, thus reducing the number of well tests required and thereby the costs of management and remediation. Here, we explore this concept through a series of numerical experiments. Considering the case of porosity characterization in saturated heterogeneous aquifers using crosshole ground-penetrating radar and borehole porosity log data, we use tracer test measurements to calibrate a relationship between porosity and hydraulic conductivity that allows the best prediction of the observed hydrological behavior. To examine the validity and effectiveness of the obtained relationship, we examine its performance at alternate locations not used in the calibration procedure. Our results indicate that this methodology allows us to obtain remarkably reliable hydrological predictions throughout the considered hydrological unit based on the geophysical data only. This was also found to be the case when significant uncertainty was considered in the underlying relationship between porosity and hydraulic conductivity.