84 resultados para yield simulation
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
This paper presents a methodology to determine the parameters used in the simulation of delamination in composite materials using decohesion finite elements. A closed-form expression is developed to define the stiffness of the cohesive layer. A novel procedure that allows the use of coarser meshes of decohesion elements in large-scale computations is proposed. The procedure ensures that the energy dissipated by the fracture process is correctly computed. It is shown that coarse-meshed models defined using the approach proposed here yield the same results as the models with finer meshes normally used in the simulation of fracture processes
Resumo:
Recently there has been a renewed research interest in the properties of non survey updates of input-output tables and social accounting matrices (SAM). Along with the venerable and well known scaling RAS method, several alternative new procedures related to entropy minimization and other metrics have been suggested, tested and used in the literature. Whether these procedures will eventually substitute or merely complement the RAS approach is still an open question without a definite answer. The performance of many of the updating procedures has been tested using some kind of proximity or closeness measure to a reference input-output table or SAM. The first goal of this paper, in contrast, is the proposal of checking the operational performance of updating mechanisms by way of comparing the simulation results that ensue from adopting alternative databases for calibration of a reference applied general equilibrium model. The second goal is to introduce a new updatin! g procedure based on information retrieval principles. This new procedure is then compared as far as performance is concerned to two well-known updating approaches: RAS and cross-entropy. The rationale for the suggested cross validation is that the driving force for having more up to date databases is to be able to conduct more current, and hopefully more credible, policy analyses.
Resumo:
In this paper we use micro data from the Spanish Family Expenditure Survey for 1990 to estimate, for the first time, the private and social rates of return of different university degrees in Spain. We compute internal rates of return and include investment on higher education financed by the public purse to estimate social rates of return. Our main finding is that, as presumed, there is large heterogeneity in rates of return amongst different university
Resumo:
Thermal systems interchanging heat and mass by conduction, convection, radiation (solar and thermal ) occur in many engineering applications like energy storage by solar collectors, window glazing in buildings, refrigeration of plastic moulds, air handling units etc. Often these thermal systems are composed of various elements for example a building with wall, windows, rooms, etc. It would be of particular interest to have a modular thermal system which is formed by connecting different modules for the elements, flexibility to use and change models for individual elements, add or remove elements without changing the entire code. A numerical approach to handle the heat transfer and fluid flow in such systems helps in saving the full scale experiment time, cost and also aids optimisation of parameters of the system. In subsequent sections are presented a short summary of the work done until now on the orientation of the thesis in the field of numerical methods for heat transfer and fluid flow applications, the work in process and the future work.
Resumo:
In this paper we examine the out-of-sample forecast performance of high-yield credit spreads regarding real-time and revised data on employment and industrial production in the US. We evaluate models using both a point forecast and a probability forecast exercise. Our main findings suggest the use of few factors obtained by pooling information from a number of sector-specific high-yield credit spreads. This can be justified by observing that, especially for employment, there is a gain from using a principal components model fitted to high-yield credit spreads compared to the prediction produced by benchmarks, such as an AR, and ARDL models that use either the term spread or the aggregate high-yield spread as exogenous regressor. Moreover, forecasts based on real-time data are generally comparable to forecasts based on revised data. JEL Classification: C22; C53; E32 Keywords: Credit spreads; Principal components; Forecasting; Real-time data.
Resumo:
The species x location interaction was of great importance in explaining the behaviour of genetic material. The study presented here shows, for the first time, the performance, under field conditions of the new tritordeum species, compared to wheat and triticale in a wide range of Mediterranean countries (Spain, Lebanon and Tunisia). The results obtained revealed that despite the diversity of environmental conditions, the main differences in yield were due to genotypes, especially to differences between species. The multi-local study with different growth conditions revealed important information about the water availability effect on yield. In the lowest yielding environments (Tunisia rainfed), Tritordeum and triticale yields were equivalent. However under better growth conditions (Spain), tritordeum yield was shown to be lower than wheat and triticale. Interestingly, when water limitation was extended during the pre-anthesis period, differences in tritordeum versus wheat-triticale yield rate were larger than when water stress occurred during anthesis. These variations were explained by the fact that kernel weight has been found as the limiting factor for yield determination in tritordeum, and a delay in the anthesis date may have been the cause for the low kernel weight and low yield under Mediterranean drought conditions. Such differences in yield between tritordeum and wheat or triticale could be explained by the fact that tritordeum is a relatively new species and far fewer resources have been devoted to its improvement when compared to wheat and triticale. Our results suggest that breeding efforts should be directed to an earlier anthesis date and a longer grain filling period. tritordeum proved to have possibilities to be grown under drought environments as a new crop, since its performance was quite close to wheat and triticale. Besides, it has qualitative added values that may improve farmers' income per unit land.
Resumo:
Nowadays, many of the health care systems are large and complex environments and quite dynamic, specifically Emergency Departments, EDs. It is opened and working 24 hours per day throughout the year with limited resources, whereas it is overcrowded. Thus, is mandatory to simulate EDs to improve qualitatively and quantitatively their performance. This improvement can be achieved modelling and simulating EDs using Agent-Based Model, ABM and optimising many different staff scenarios. This work optimises the staff configuration of an ED. In order to do optimisation, objective functions to minimise or maximise have to be set. One of those objective functions is to find the best or optimum staff configuration that minimise patient waiting time. The staff configuration comprises: doctors, triage nurses, and admissions, the amount and sort of them. Staff configuration is a combinatorial problem, that can take a lot of time to be solved. HPC is used to run the experiments, and encouraging results were obtained. However, even with the basic ED used in this work the search space is very large, thus, when the problem size increases, it is going to need more resources of processing in order to obtain results in an acceptable time.
Resumo:
Hem realitzat l’estudi de moviments humans i hem buscat la forma de poder crear aquests moviments en temps real sobre entorns digitals de forma que la feina que han de dur a terme els artistes i animadors sigui reduïda. Hem fet un estudi de les diferents tècniques d’animació de personatges que podem trobar actualment en l’industria de l’entreteniment així com les principals línies de recerca, estudiant detingudament la tècnica més utilitzada, la captura de moviments. La captura de moviments permet enregistrar els moviments d’una persona mitjançant sensors òptics, sensors magnètics i vídeo càmeres. Aquesta informació és emmagatzemada en arxius que després podran ser reproduïts per un personatge en temps real en una aplicació digital. Tot moviment enregistrat ha d’estar associat a un personatge, aquest és el procés de rigging, un dels punts que hem treballat ha estat la creació d’un sistema d’associació de l’esquelet amb la malla del personatge de forma semi-automàtica, reduint la feina de l’animador per a realitzar aquest procés. En les aplicacions en temps real com la realitat virtual, cada cop més s’està simulant l’entorn en el que viuen els personatges mitjançant les lleis de Newton, de forma que tot canvi en el moviment d’un cos ve donat per l’aplicació d’una força sobre aquest. La captura de moviments no escala bé amb aquests entorns degut a que no és capaç de crear noves animacions realistes a partir de l’enregistrada que depenguin de l’interacció amb l’entorn. L’objectiu final del nostre treball ha estat realitzar la creació d’animacions a partir de forces tal i com ho fem en la realitat en temps real. Per a això hem introduït un model muscular i un sistema de balanç sobre el personatge de forma que aquest pugui respondre a les interaccions amb l’entorn simulat mitjançant les lleis de Newton de manera realista.
Resumo:
This paper proposes an heuristic for the scheduling of capacity requests and the periodic assignment of radio resources in geostationary (GEO) satellite networks with star topology, using the Demand Assigned Multiple Access (DAMA) protocol in the link layer, and Multi-Frequency Time Division Multiple Access (MF-TDMA) and Adaptive Coding and Modulation (ACM) in the physical layer.
Resumo:
The Voxel Imaging PET (VIP) Path nder project got the 4 year European Research Council FP7 grant in 2010 to prove the feasibility of using CdTe detectors in a novel conceptual design of PET scanner. The work presented in this thesis is a part of the VIP project and consists of, on the one hand, the characterization of a CdTe detector in terms of energy resolution and coincidence time resolution and, on the other hand, the simulation of the setup with the single detector in order to extend the results to the full PET scanner. An energy resolution of 0.98% at 511 keV with a bias voltage of 1000 V/mm has been measured at low temperature T=-8 ºC. The coincidence time distribution of two twin detectors has been found to be as low as 6 ns FWHM for events with energies above 500 keV under the same temperature and bias conditions. The measured energy and time resolution values are compatible with similar ndings available in the literature and prove the excellent potential of CdTe for PET applications. This results have been presented in form of a poster contribution at the IEEE NSS/MIC & RTSD 2011 conference in October 2011 in Valencia and at the iWoRID 2012 conference in July 2012 in Coimbra, Portugal. They have been also submitted for publication to "Journal of Instrumentation (JINST)" in September 2012.
Resumo:
Our new simple method for calculating accurate Franck-Condon factors including nondiagonal (i.e., mode-mode) anharmonic coupling is used to simulate the C2H4+X2B 3u←C2H4X̃1 Ag band in the photoelectron spectrum. An improved vibrational basis set truncation algorithm, which permits very efficient computations, is employed. Because the torsional mode is highly anharmonic it is separated from the other modes and treated exactly. All other modes are treated through the second-order perturbation theory. The perturbation-theory corrections are significant and lead to a good agreement with experiment, although the separability assumption for torsion causes the C2 D4 results to be not as good as those for C2 H4. A variational formulation to overcome this circumstance, and deal with large anharmonicities in general, is suggested
Resumo:
Bimodal dispersal probability distributions with characteristic distances differing by several orders of magnitude have been derived and favorably compared to observations by Nathan [Nature (London) 418, 409 (2002)]. For such bimodal kernels, we show that two-dimensional molecular dynamics computer simulations are unable to yield accurate front speeds. Analytically, the usual continuous-space random walks (CSRWs) are applied to two dimensions. We also introduce discrete-space random walks and use them to check the CSRW results (because of the inefficiency of the numerical simulations). The physical results reported are shown to predict front speeds high enough to possibly explain Reid's paradox of rapid tree migration. We also show that, for a time-ordered evolution equation, fronts are always slower in two dimensions than in one dimension and that this difference is important both for unimodal and for bimodal kernels
Resumo:
Earthquakes occurring around the world each year cause thousands ofdeaths, millions of dollars in damage to infrastructure, and incalculablehuman suffering. In recent years, satellite technology has been asignificant boon to response efforts following an earthquake and itsafter-effects by providing mobile communications between response teamsand remote sensing of damaged areas to disaster management organizations.In 2007, an international team of students and professionals assembledduring theInternational Space University’s Summer Session Program in Beijing, Chinato examine how satellite and ground-based technology could be betterintegrated to provide an optimised response in the event of an earthquake.The resulting Technology Resources for Earthquake MOnitoring and Response(TREMOR) proposal describes an integrative prototype response system thatwill implement mobile satellite communication hubs providing telephone anddata links between response teams, onsite telemedicine consultation foremergency first-responders, and satellite navigation systems that willlocate and track emergency vehicles and guide search-and-rescue crews. Aprototype earthquake simulation system is also proposed, integratinghistorical data, earthquake precursor data, and local geomatics andinfrastructure information to predict the damage that could occur in theevent of an earthquake. The backbone of these proposals is a comprehensiveeducation and training program to help individuals, communities andgovernments prepare in advance. The TREMOR team recommends thecoordination of these efforts through a centralised, non-governmentalorganization.
Resumo:
Background: With increasing computer power, simulating the dynamics of complex systems in chemistry and biology is becoming increasingly routine. The modelling of individual reactions in (bio)chemical systems involves a large number of random events that can be simulated by the stochastic simulation algorithm (SSA). The key quantity is the step size, or waiting time, τ, whose value inversely depends on the size of the propensities of the different channel reactions and which needs to be re-evaluated after every firing event. Such a discrete event simulation may be extremely expensive, in particular for stiff systems where τ can be very short due to the fast kinetics of some of the channel reactions. Several alternative methods have been put forward to increase the integration step size. The so-called τ-leap approach takes a larger step size by allowing all the reactions to fire, from a Poisson or Binomial distribution, within that step. Although the expected value for the different species in the reactive system is maintained with respect to more precise methods, the variance at steady state can suffer from large errors as τ grows. Results: In this paper we extend Poisson τ-leap methods to a general class of Runge-Kutta (RK) τ-leap methods. We show that with the proper selection of the coefficients, the variance of the extended τ-leap can be well-behaved, leading to significantly larger step sizes.Conclusions: The benefit of adapting the extended method to the use of RK frameworks is clear in terms of speed of calculation, as the number of evaluations of the Poisson distribution is still one set per time step, as in the original τ-leap method. The approach paves the way to explore new multiscale methods to simulate (bio)chemical systems.