63 resultados para vector auto regression

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe an equivalence of categories between the category of mixed Hodge structures and a category of vector bundles on the toric complex projective plane which verify some semistability condition. We then apply this correspondence to define an invariant which generalises the notion of R-split mixed Hodge structure and compute extensions in the category of mixed Hodge structures in terms of extensions of the corresponding vector bundles. We also give a relative version of this correspondence and apply it to define stratifications of the bases of the variations of mixed Hodge structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper explores the effects of two main sources of innovation -intramural and external R&D- on the productivity level in a sample of 3,267 Catalonian firms. The data set used is based on the official innovation survey of Catalonia which was a part of the Spanish sample of CIS4, covering the years 2002-2004. We compare empirical results by applying usual OLS and quantile regression techniques both in manufacturing and services industries. In quantile regression, results suggest different patterns at both innovation sources as we move across conditional quantiles. The elasticity of intramural R&D activities on productivity decreased when we move up the high productivity levels both in manufacturing and services sectors, while the effects of external R&D rise in high-technology industries but are more ambiguous in low-technology and knowledge-intensive services. JEL codes: O300, C100, O140. Keywords: Innovation sources, R&D, Productivity, Quantile regression

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In automobile insurance, it is useful to achieve a priori ratemaking by resorting to gene- ralized linear models, and here the Poisson regression model constitutes the most widely accepted basis. However, insurance companies distinguish between claims with or without bodily injuries, or claims with full or partial liability of the insured driver. This paper exa- mines an a priori ratemaking procedure when including two di®erent types of claim. When assuming independence between claim types, the premium can be obtained by summing the premiums for each type of guarantee and is dependent on the rating factors chosen. If the independence assumption is relaxed, then it is unclear as to how the tari® system might be a®ected. In order to answer this question, bivariate Poisson regression models, suitable for paired count data exhibiting correlation, are introduced. It is shown that the usual independence assumption is unrealistic here. These models are applied to an automobile insurance claims database containing 80,994 contracts belonging to a Spanish insurance company. Finally, the consequences for pure and loaded premiums when the independence assumption is relaxed by using a bivariate Poisson regression model are analysed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper explores the effects of two main sources of innovation —intramural and external R&D— on the productivity level in a sample of 3,267 Catalan firms. The data set used is based on the official innovation survey of Catalonia which was a part of the Spanish sample of CIS4, covering the years 2002-2004. We compare empirical results by applying usual OLS and quantile regression techniques both in manufacturing and services industries. In quantile regression, results suggest different patterns at both innovation sources as we move across conditional quantiles. The elasticity of intramural R&D activities on productivity decreased when we move up the high productivity levels both in manufacturing and services sectors, while the effects of external R&D rise in high-technology industries but are more ambiguous in low-technology and services industries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Privatization of local public services has been implemented worldwide in the last decades. Why local governments privatize has been the subject of much discussion, and many empirical works have been devoted to analyzing the factors that explain local privatization. Such works have found a great diversity of motivations, and the variation among reported empirical results is large. To investigate this diversity we undertake a meta-regression analysis of the factors explaining the decision to privatize local services. Overall, our results indicate that significant relationships are very dependent upon the characteristics of the studies. Indeed, fiscal stress and political considerations have been found to contribute to local privatization specially in the studies of US cases published in the eighties that consider a broad range of services. Studies that focus on one service capture more accurately the influence of scale economies on privatization. Finally, governments of small towns are more affected by fiscal stress, political considerations and economic efficiency, while ideology seems to play a major role for large cities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lean meat percentage (LMP) is an important carcass quality parameter. The aim of this work is to obtain a calibration equation for the Computed Tomography (CT) scans with the Partial Least Square Regression (PLS) technique in order to predict the LMP of the carcass and the different cuts and to study and compare two different methodologies of the selection of the variables (Variable Importance for Projection — VIP- and Stepwise) to be included in the prediction equation. The error of prediction with cross-validation (RMSEPCV) of the LMP obtained with PLS and selection based on VIP value was 0.82% and for stepwise selection it was 0.83%. The prediction of the LMP scanning only the ham had a RMSEPCV of 0.97% and if the ham and the loin were scanned the RMSEPCV was 0.90%. Results indicate that for CT data both VIP and stepwise selection are good methods. Moreover the scanning of only the ham allowed us to obtain a good prediction of the LMP of the whole carcass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper explores the effects of two main sources of innovation - intramural and external R&D— on the productivity level in a sample of 3,267 Catalonian firms. The data set used is based on the official innovation survey of Catalonia which was a part of the Spanish sample of CIS4, covering the years 2002-2004. We compare empirical results by applying usual OLS and quantile regression techniques both in manufacturing and services industries. In quantile regression, results suggest different patterns at both innovation sources as we move across conditional quantiles. The elasticity of intramural R&D activities on productivity decreased when we move up the high productivity levels both in manufacturing and services sectors, while the effects of external R&D rise in high-technology industries but are more ambiguous in low-technology and knowledge-intensive services. JEL codes: O300, C100, O140 Keywords: Innovation sources, R&D, Productivity, Quantile Regression

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When actuaries face with the problem of pricing an insurance contract that contains different types of coverage, such as a motor insurance or homeowner's insurance policy, they usually assume that types of claim are independent. However, this assumption may not be realistic: several studies have shown that there is a positive correlation between types of claim. Here we introduce different regression models in order to relax the independence assumption, including zero-inflated models to account for excess of zeros and overdispersion. These models have been largely ignored to multivariate Poisson date, mainly because of their computational di±culties. Bayesian inference based on MCMC helps to solve this problem (and also lets us derive, for several quantities of interest, posterior summaries to account for uncertainty). Finally, these models are applied to an automobile insurance claims database with three different types of claims. We analyse the consequences for pure and loaded premiums when the independence assumption is relaxed by using different multivariate Poisson regression models and their zero-inflated versions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a recent paper Bermúdez [2009] used bivariate Poisson regression models for ratemaking in car insurance, and included zero-inflated models to account for the excess of zeros and the overdispersion in the data set. In the present paper, we revisit this model in order to consider alternatives. We propose a 2-finite mixture of bivariate Poisson regression models to demonstrate that the overdispersion in the data requires more structure if it is to be taken into account, and that a simple zero-inflated bivariate Poisson model does not suffice. At the same time, we show that a finite mixture of bivariate Poisson regression models embraces zero-inflated bivariate Poisson regression models as a special case. Additionally, we describe a model in which the mixing proportions are dependent on covariates when modelling the way in which each individual belongs to a separate cluster. Finally, an EM algorithm is provided in order to ensure the models’ ease-of-fit. These models are applied to the same automobile insurance claims data set as used in Bermúdez [2009] and it is shown that the modelling of the data set can be improved considerably.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article focuses on business risk management in the insurance industry. A methodology for estimating the profit loss caused by each customer in the portfolio due to policy cancellation is proposed. Using data from a European insurance company, customer behaviour over time is analyzed in order to estimate the probability of policy cancelation and the resulting potential profit loss due to cancellation. Customers may have up to two different lines of business contracts: motor insurance and other diverse insurance (such as, home contents, life or accident insurance). Implications for understanding customer cancellation behaviour as the core of business risk management are outlined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land cover classification is a key research field in remote sensing and land change science as thematic maps derived from remotely sensed data have become the basis for analyzing many socio-ecological issues. However, land cover classification remains a difficult task and it is especially challenging in heterogeneous tropical landscapes where nonetheless such maps are of great importance. The present study aims to establish an efficient classification approach to accurately map all broad land cover classes in a large, heterogeneous tropical area of Bolivia, as a basis for further studies (e.g., land cover-land use change). Specifically, we compare the performance of parametric (maximum likelihood), non-parametric (k-nearest neighbour and four different support vector machines - SVM), and hybrid classifiers, using both hard and soft (fuzzy) accuracy assessments. In addition, we test whether the inclusion of a textural index (homogeneity) in the classifications improves their performance. We classified Landsat imagery for two dates corresponding to dry and wet seasons and found that non-parametric, and particularly SVM classifiers, outperformed both parametric and hybrid classifiers. We also found that the use of the homogeneity index along with reflectance bands significantly increased the overall accuracy of all the classifications, but particularly of SVM algorithms. We observed that improvements in producer’s and user’s accuracies through the inclusion of the homogeneity index were different depending on land cover classes. Earlygrowth/degraded forests, pastures, grasslands and savanna were the classes most improved, especially with the SVM radial basis function and SVM sigmoid classifiers, though with both classifiers all land cover classes were mapped with producer’s and user’s accuracies of around 90%. Our approach seems very well suited to accurately map land cover in tropical regions, thus having the potential to contribute to conservation initiatives, climate change mitigation schemes such as REDD+, and rural development policies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper explores how absorptive capacity affects the innovative performance and productivity dynamics of Spanish firms. A firm’s efficiency levels are measured using two variables: the labour productivity and the Total Factor Productivity (TFP). The theoretical framework is based on the seminal contributions of Cohen and Levinthal (1989, 1990) regarding absorptive capacity; and the applied framework is based on the four-stage structural model proposed by Crépon, Duguet and Mairesse (1998) for setting the determinants of R&D, the effects of R&D activities on innovation outputs, and the impacts of innovation on firm productivity. The present study uses a twostage structural model. In the first stage, a probit estimation is used to investigate how the sources of R&D, the absorptive capacity and a vector of the firm’s individual features influence the firm’s likelihood of developing innovations in products or processes. In the second phase, a quantile regression is used to analyze the effect of R&D sources, absorptive capacity and firm characteristics on productivity. This method shows the elasticity of each exogenous variable on productivity according to the firms’ levels of efficiency, and thus allows us to distinguish between firms that are close to the technological frontier and those that are further away from it. We used extensive firm-level panel data from 5,575 firms for the 2004-2009 period. The results show that the internal absorptive capacity has a strong impact on the productivity of firms, whereas the role of external absorptive capacity differs according to nature of the each industry and according the distance of firms from the technological frontier. Key words: R&D sources, innovation strategies, absorptive capacity, technological distance, quantile regression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time series regression models are especially suitable in epidemiology for evaluating short-term effects of time-varying exposures on health. The problem is that potential for confounding in time series regression is very high. Thus, it is important that trend and seasonality are properly accounted for. Our paper reviews the statistical models commonly used in time-series regression methods, specially allowing for serial correlation, make them potentially useful for selected epidemiological purposes. In particular, we discuss the use of time-series regression for counts using a wide range Generalised Linear Models as well as Generalised Additive Models. In addition, recently critical points in using statistical software for GAM were stressed, and reanalyses of time series data on air pollution and health were performed in order to update already published. Applications are offered through an example on the relationship between asthma emergency admissions and photochemical air pollutants

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Es presenta un nou algorisme per a la diagonalització de matrius amb diagonal dominant. Es mostra la seva eficàcia en el tractament de matrius no simètriques, amb elements definits sobre el cos complex i, fins i tot, de grans dimensions. Es posa de manifest la senzillesa del mètode així com la facilitat d'implementació en forma de codi de programació. Es comentenels seus avantatges i característiques limitants, així com algunes de les millores que es poden implementar. Finalment, es mostren alguns exemples numèrics