6 resultados para unfractionated heparin
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Background: Current guidelines for patients with moderate- or high-risk acute coronary syndromes recommend an early invasive approach with concomitant antithrombotic therapy, including aspirin, clopidogrel, unfractionated or low-molecular-weight heparin, and glycoprotein IIb/IIIa inhibitors. We evaluated the role of thrombin-specific anticoagulation with bivalirudin in such patients. Methods: We assigned 13,819 patients with acute coronary syndromes to one of three antithrombotic regimens: unfractionated heparin or enoxaparin plus a glycoprotein IIb/IIIa inhibitor, bivalirudin plus a glycoprotein IIb/IIIa inhibitor, or bivalirudin alone. The primary end points were a composite ischemia end point (death, myocardial infarction, or unplanned revascularization for ischemia), major bleeding, and the net clinical outcome, defined as the combination of composite ischemia or major bleeding. Results: Bivalirudin plus a glycoprotein IIb/IIIa inhibitor, as compared with heparin plus a glycoprotein IIb/IIIa inhibitor, was associated with noninferior 30-day rates of the composite ischemia end point (7.7% and 7.3%, respectively), major bleeding (5.3% and 5.7%), and the net clinical outcome end point (11.8% and 11.7%). Bivalirudin alone, as compared with heparin plus a glycoprotein IIb/IIIa inhibitor, was associated with a noninferior rate of the composite ischemia end point (7.8% and 7.3%, respectively; P = 0.32; relative risk, 1.08; 95% confidence interval [CI], 0.93 to 1.24) and significantly reduced rates of major bleeding (3.0% vs. 5.7%; P<0.001; relative risk, 0.53; 95% CI, 0.43 to 0.65) and the net clinical outcome end point (10.1% vs. 11.7%; P = 0.02; relative risk, 0.86; 95% CI, 0.77 to 0.97). Conclusions: In patients with moderate- or high-risk acute coronary syndromes who were undergoing invasive treatment with glycoprotein IIb/IIIa inhibitors, bivalirudin was associated with rates of ischemia and bleeding that were similar to those with heparin. Bivalirudin alone was associated with similar rates of ischemia and significantly lower rates of bleeding. (ClinicalTrials.gov number, NCT00093158.)
Resumo:
Background In addition to its anticoagulant properties, heparin has anti-inflammatory effects, the molecular and mechanistic bases of which are incompletely defined. AIMS The current studies were designed to test the hypothesis that heparin abrogates the expression or function of leucocyte-endothelial adherence molecules which are fundamental to the acute inflammatory response. Methods The effects of heparin on tumour necrosis factor alpha (TNF-¿) induced leucocyte rolling, adhesion, and migration as well as vascular permeability were assessed in rat mesenteric venules using intravital microscopy. Expression of adhesion molecules was quantitated using a double radiolabelled monoclonal antibody (mAb) binding technique in vivo (P-selectin, intercellular cell adhesion molecule type 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1)) or flow cytometry (CD11a, CD11b, and L-selectin). Ex vivo binding of heparin to neutrophils was assessed by flow cytometry. RESULTS TNF-alpha induced a significant increase in leucocyte rolling, adhesion, and migration, and vascular permeability, coincident with a significant increase in expression of P-selectin, ICAM-1, and VCAM-1. Ex vivo assessment of blood neutrophils showed significant upregulation of CD11a and CD11b and significant downregulation of L-selectin within five hours of TNF-¿ administration. Heparin pretreatment significantly attenuated leucocyte rolling, adhesion, and migration but did not affect expression of cell adhesion molecules or vascular permeability elicited by TNF-¿ administration. Binding of heparin was significantly increased on blood neutrophils obtained five hours after TNF-¿ administration. Preincubation with an anti-CD11b mAb but not with an anti-CD11a or anti-L-selectin antibody significantly diminished heparin binding ex vivo.
Resumo:
BACKGROUND: Lipoprotein lipase (LPL) is anchored at the vascular endothelium through interaction with heparan sulfate. It is not known how this enzyme is turned over but it has been suggested that it is slowly released into blood and then taken up and degraded in the liver. Heparin releases the enzyme into the circulating blood. Several lines of evidence indicate that this leads to accelerated flux of LPL to the liver and a temporary depletion of the enzyme in peripheral tissues. RESULTS: Rat livers were found to contain substantial amounts of LPL, most of which was catalytically inactive. After injection of heparin, LPL mass in liver increased for at least an hour. LPL activity also increased, but not in proportion to mass, indicating that the lipase soon lost its activity after being bound/taken up in the liver. To further study the uptake, bovine LPL was labeled with 125I and injected. Already two min after injection about 33 % of the injected lipase was in the liver where it initially located along sinusoids. With time the immunostaining shifted to the hepatocytes, became granular and then faded, indicating internalization and degradation. When heparin was injected before the lipase, the initial immunostaining along sinusoids was weaker, whereas staining over Kupffer cells was enhanced. When the lipase was converted to inactive before injection, the fraction taken up in the liver increased and the lipase located mainly to the Kupffer cells. CONCLUSIONS: This study shows that there are heparin-insensitive binding sites for LPL on both hepatocytes and Kupffer cells. The latter may be the same sites as those that mediate uptake of inactive LPL. The results support the hypothesis that turnover of endothelial LPL occurs in part by transport to and degradation in the liver, and that this transport is accelerated after injection of heparin.
Resumo:
Mehta et al. do not show any significant difference between early and delayed intervention in patients with acute coronary syndrome. In their study, 9.9% of patients in the...
Resumo:
Mehta et al. do not show any significant difference between early and delayed intervention in patients with acute coronary syndrome. In their study, 9.9% of patients in the...
Resumo:
Cell surface heparan sulfate proteoglycans (HSPGs) participate in molecular events that regulate cell adhesion, migration, and proliferation. The present study demonstrates that soluble heparin-binding proteins or cross-linking antibodies induce the aggregation of cell surface HSPGs and their distribution along underlying actin filaments. Immunofluorescence and confocal microscopy and immunogold and electron microscopy indicate that, in the absence of ligands, HSPGs are irregularly distributed on the fibroblast cell surface, without any apparent codistribution with the actin cytoskeleton. In the presence of ligand (lipoprotein lipase) or antibodies against heparan sulfate, HSPGs aggregate and colocalize with the actin cytoskeleton. Triton X-100 extraction and immunoelectron microscopy have demonstrated that in this condition HSPGs were clustered and associated with the actin filaments. Crosslinking experiments that use biotinylated lipoprotein lipase have revealed three major proteoglycans as binding sites at the fibroblast cell surface. These cross-linked proteoglycans appeared in the Triton X-100 insoluble fraction. Platinum/carbon replicas of the fibroblast surface incubated either with lipoprotein lipase or antiheparan sulfate showed large aggregates of HSPGs regularly distributed along cytoplasmic fibers. Quantification of the spacing between HSPGs by confocal microscopy confirmed that the nonrandom distribution of HSPG aggregates along the actin cytoskeleton was induced by ligand binding. When cells were incubated either with lipoprotein lipase or antibodies against heparan sulfate, the distance between immunofluorescence spots was uniform. In contrast, the spacing between HSPGs on fixed cells not incubated with ligand was more variable. This highly organized spatial relationship between actin and proteoglycans suggests that cortical actin filaments could organize the molecular machinery involved in signal transduction and molecular movements on the cell surface that are triggered by heparin-binding proteins.