17 resultados para trace formula
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
The trace of a square matrix can be defined by a universal property which, appropriately generalized yields the concept of "trace of an endofunctor of a small category". We review the basic definitions of this general concept and give a new construction, the "pretrace category", which allows us to obtain the trace of an endofunctor of a small category as the set of connected components of its pretrace. We show that this pretrace construction determines a finite-product preserving endofunctor of the category of small categories, and we deduce from this that the trace inherits any finite-product algebraic structure that the original category may have. We apply our results to several examples from Representation Theory obtaining a new (indirect) proof of the fact that two finite dimensional linear representations of a finite group are isomorphic if and only if they have the same character.
Resumo:
L'objectiu d'aquest treball és el d'obtenir informació sobre investigacions empíricoexperimentals (centrant-nos en el procés de la traducció) amb vista a aplicar-la al projecte TRACE que duu a terme el grup d'investigació Tradumàtica. A partir d'una recerca bibliogràfica a revistes especialitzades i bases de dades, seleccionem setze articles representatius de la recerca en aquest camp, dels quals extraiem informació sobre el disseny. Aquesta informació ens serveix primer per a analitzar els instruments i el disseny —quant als subjectes i els materials— emprats en les investigacions i, després, per a veure com s'han utilitzat en els casos seleccionats. Finalment, n'extraiem conclusions amb el rerefons del projecte TRACE
Resumo:
In this paper we investigate the goodness of fit of the Kirk's approximation formula for spread option prices in the correlated lognormal framework. Towards this end, we use the Malliavin calculus techniques to find an expression for the short-time implied volatility skew of options with random strikes. In particular, we obtain that this skew is very pronounced in the case of spread options with extremely high correlations, which cannot be reproduced by a constant volatility approximation as in the Kirk's formula. This fact agrees with the empirical evidence. Numerical examples are given.
Resumo:
We see that the price of an european call option in a stochastic volatilityframework can be decomposed in the sum of four terms, which identifythe main features of the market that affect to option prices: the expectedfuture volatility, the correlation between the volatility and the noisedriving the stock prices, the market price of volatility risk and thedifference of the expected future volatility at different times. We alsostudy some applications of this decomposition.
Resumo:
By means of Malliavin Calculus we see that the classical Hull and White formulafor option pricing can be extended to the case where the noise driving thevolatility process is correlated with the noise driving the stock prices. Thisextension will allow us to construct option pricing approximation formulas.Numerical examples are presented.
Resumo:
By means of classical Itô's calculus we decompose option prices asthe sum of the classical Black-Scholes formula with volatility parameterequal to the root-mean-square future average volatility plus a term dueby correlation and a term due to the volatility of the volatility. Thisdecomposition allows us to develop first and second-order approximationformulas for option prices and implied volatilities in the Heston volatilityframework, as well as to study their accuracy. Numerical examples aregiven.
Resumo:
In this paper, generalizing results in Alòs, León and Vives (2007b), we see that the dependence of jumps in the volatility under a jump-diffusion stochastic volatility model, has no effect on the short-time behaviour of the at-the-money implied volatility skew, although the corresponding Hull and White formula depends on the jumps. Towards this end, we use Malliavin calculus techniques for Lévy processes based on Løkka (2004), Petrou (2006), and Solé, Utzet and Vives (2007).
Resumo:
Proves de conversió de fòrmules matemàtiques des d'editors de text ofimàtics i des de Làtex. Visionat en HTML i MathML. El millor resultat s'aconsegueix amb MSWord+MathType i IE+MathPlayer.
Resumo:
The part proportional to the Euler-Poincar characteristic of the contribution of spin-2 fields to the gravitational trace anomaly is computed. It is seen to be of the same sign as all the lower-spin contributions, making anomaly cancellation impossible. Subtleties related to Weyl invariance, gauge independence, ghosts, and counting of degrees of freedom are pointed out.
Resumo:
It is argued that previous computations of the spin-(3/2 anomaly have spurious contributions, as there is Weyl-invariance breaking already at the classical level. The genuine, gauge-invariant, spin-(3/2 gravitational trace anomaly is computed here.
Resumo:
Bardina and Jolis [Stochastic process. Appl. 69 (1997) 83-109] prove an extension of Ito's formula for F(Xt, t), where F(x, t) has a locally square-integrable derivative in x that satisfies a mild continuity condition in t and X is a one-dimensional diffusion process such that the law of Xt has a density satisfying certain properties. This formula was expressed using quadratic covariation. Following the ideas of Eisenbaum [Potential Anal. 13 (2000) 303-328] concerning Brownian motion, we show that one can re-express this formula using integration over space and time with respect to local times in place of quadratic covariation. We also show that when the function F has a locally integrable derivative in t, we can avoid the mild continuity condition in t for the derivative of F in x.
Resumo:
We derive the chaotic expansion of the product of nth- and first-order multiple stochastic integrals with respect to certain normal martingales. This is done by application of the classical and quantum product formulae for multiple stochastic integrals. Our approach extends existing results on chaotic calculus for normal martingales and exhibits properties, relative to multiple stochastic integrals, polynomials and Wick products, that characterize the Wiener and Poisson processes.
Resumo:
We present a new asymptotic formula for the maximum static voltage in a simplified model for on-chip power distribution networks of array bonded integrated circuits. In this model the voltage is the solution of a Poisson equation in an infinite planar domain whose boundary is an array of circular pads of radius ", and we deal with the singular limit Ɛ → 0 case. In comparison with approximations that appear in the electronic engineering literature, our formula is more complete since we have obtained terms up to order Ɛ15. A procedure will be presented to compute all the successive terms, which can be interpreted as using multipole solutions of equations involving spatial derivatives of functions. To deduce the formula we use the method of matched asymptotic expansions. Our results are completely analytical and we make an extensive use of special functions and of the Gauss constant G