43 resultados para tomato plant

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whiteflies and whitefly-transmitted viruses are some of the major constraints on European tomato production. The main objectives of this study were to: identify where and why whiteflies are a major limitation on tomato crops; collect information about whiteflies and associated viruses; determine the available management tools; and identify key knowledge gaps and research priorities. This study was conducted within the framework of ENDURE (European Network for Durable Exploitation of Crop Protection Strategies). Two whitefly species are the main pests of tomato in Europe: Bemisia tabaci and Trialeurodes vaporariorum. Trialeurodes vaporariorum is widespread to all areas where greenhouse industry is present, and B. tabaci has invaded, since the early 1990’s, all the subtropical and tropical areas. Biotypes B and Q of B. tabaci are widespread and especially problematic. Other key tomato pests are Aculops lycopersici, Helicoverpa armigera, Frankliniella occidentalis, and leaf miners. Tomato crops are particularly susceptible to viruses causingTomato yellow leaf curl disease (TYLCD). High incidences of this disease are associated to high pressure of its vector, B. tabaci. The ranked importance of B. tabaci established in this study correlates with the levels of insecticide use, showing B. tabaci as one of the principal drivers behind chemical control. Confirmed cases of resistance to almost all insecticides have been reported. Integrated Pest Management based on biological control (IPM-BC) is applied in all the surveyed regions and identified as the strategy using fewer insecticides. Other IPM components include greenhouse netting and TYLCD-tolerant tomato cultivars. Sampling techniques differ between regions, where decisions are generally based upon whitefly densities and do not relate to control strategies or growing cycles. For population monitoring and control, whitefly species are always identified. In Europe IPM-BC is the recommended strategy for a sustainable tomato production. The IPM-BC approach is mainly based on inoculative releases of the parasitoids Eretmocerus mundus and Encarsia formosa and/or the polyphagous predators Macrolophus caliginosus and Nesidiocoris tenuis. However, some limitations for a wider implementation have been identified: lack of biological solutions for some pests, costs of beneficials, low farmer confidence, costs of technical advice, and low pest injury thresholds. Research priorities to promote and improve IPM-BC are proposed on the following domains: (i) emergence and invasion of new whitefly-transmitted viruses; (ii) relevance of B. tabaci biotypes regarding insecticide resistance; (iii) biochemistry and genetics of plant resistance; (iv) economic thresholds and sampling techniques of whiteflies for decision making; and (v) conservation and management of native whitefly natural enemies and improvement of biological control of other tomato pests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA based techniques have proved to be very useful methods to study trophic relationships 17 between pests and their natural enemies. However, most predators are best defined as omnivores, 18 and the identification of plant-specific DNA should also allow the identification of the plant 19 species the predators have been feeding on. In this study, a PCR approach based on the 20 development of specific primers was developed as a self-marking technique to detect plant DNA 21 within the gut of one heteropteran omnivorous predator (Macrolophus pygmaeus) and two 22 lepidopteran pest species (Helicoverpa armigera and Tuta absoluta). Specific tomato primers 23 were designed from the ITS 1-2 region, which allowed the amplification of a tomato DNA 24 fragment of 332 bp within the three insect species tested in all cases (100% of detection at t = 0) 25 and did not detect DNA of other plants nor of the starved insects. Plant DNA half-lives at 25ºC 26 ranged from 5.8h, to 27.7h and 28.7h within M. pygmaeus, H. armigera and T. absoluta, 27 respectively. Tomato DNA detection within field collected M. pygmaeus suggests dietary mixing 28 in this omnivorous predator and showed a higher detection of tomato DNA in females and 29 nymphs than males. This study provides a useful tool to detect and to identify plant food sources 30 of arthropods and to evaluate crop colonization from surrounding vegetation in conservation 31 biological control programs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Carotenoids are the most widespread group of pigments found in nature. In addition to their role in the physiology of the plant, carotenoids also have nutritional relevance as their incorporation in the human diet provides health benefits. In non-photosynthetic tissues, carotenoids are synthesized and stored in specialized plastids called chromoplasts. At present very little is known about the origin of the metabolic precursors and cofactors required to sustain the high rate of carotenoid biosynthesis in these plastids. Recent proteomic data have revealed a number of biochemical and metabolic processes potentially operating in fruit chromoplasts. However, considering that chloroplast to chromoplast differentiation is a very rapid process during fruit ripening, there is the possibility that some of the proteins identified in the proteomic analysis could represent remnants no longer having a functional role in chromoplasts. Therefore, experimental validation is necessary to prove whether these predicted processes are actually operative in chromoplasts. Results A method has been established for high-yield purification of tomato fruit chromoplasts suitable for metabolic studies. Radiolabeled precursors were efficiently incorporated and further metabolized in isolated chromoplast. Analysis of labeled lipophilic compounds has revealed that lipid biosynthesis is a very efficient process in chromoplasts, while the relatively low incorporation levels found in carotenoids suggest that lipid production may represent a competing pathway for carotenoid biosynthesis. Malate and pyruvate are efficiently converted into acetyl-CoA, in agreement with the active operation of the malic enzyme and the pyruvate dehydrogenase complex in the chromoplast. Our results have also shown that isolated chromoplasts can actively sustain anabolic processes without the exogenous supply of ATP, thus suggesting that these organelles may generate this energetic cofactor in an autonomous way. Conclusions We have set up a method for high yield purification of intact tomato fruit chromoplasts suitable for precursor uptake assays and metabolic analyses. Using targeted radiolabeled precursors we have been able to unravel novel biochemical and metabolic aspects related with carotenoid and lipid biosynthesis in tomato fruit chromoplasts. The reported chromoplast system could represent a valuable platform to address the validation and characterization of functional processes predicted from recent transcriptomic and proteomic data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tomato (Solanum lycopersicum) is a major crop plant and a model system for fruit development. Solanum is one of the largest angiosperm genera1 and includes annual and perennial plants from diverse habitats. Here we present a high-quality genome sequence of domesticated tomato, a draft sequence of its closest wild relative, Solanum pimpinellifolium2, and compare them to each other and to the potato genome (Solanum tuberosum). The two tomato genomes show only 0.6% nucleotide divergence and signs of recent admixture, but show more than 8% divergence from potato, with nine large and several smaller inversions. In contrast to Arabidopsis, but similar to soybean, tomato and potato small RNAs map predominantly to gene-rich chromosomal regions, including gene promoters. The Solanum lineage has experienced two consecutive genome triplications: one that is ancient and shared with rosids, and a more recent one. These triplications set the stage for the neofunctionalization of genes controlling fruit characteristics, such as colour and fleshiness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A plot study was conducted to assess changes in Cd phytoavailability to a tomato cultivar in an agricultural soil in Southeastern Spain amended in two different ways (A and B), under controlled conditions. The experimental soil corresponded to a fine-loamy carbonatic thermic Calcidic Haploxeroll (Soil Survey Staff, 1998). A) Soil was amended with a single application of sewage sludge from a municipal source that had a total Cd concentration of 0.5 mg kg-1 at a rate that represented a final average concentration in the mixture of soil and sludge of less than 50 µg Cd kg-1. B) The amendment consisted of the addition of a mineral fertiliser with the same amount of NPK as in the sewage sludge application. The final levels of Cd were supposed to be negligible. A plot series without amendments was also performed (C). DTPA plus triethanolamine, and ammonium acetate extractable fractions in soils were analysed for all the plots. The time-dependent Cd accumulation in different parts of the tomato plants was studied by means of a Cd salt treatment. For each block (A, B, and C) four levels of Cd (0, 3, 30, 100 mg kg-1) were added as CdCl2. There was a significant increase in plant Cd after the initial cropping. Tomato stems, leaves and fruits were analysed separately for Cd determination. Differential Cd distribution and accumulation in tomato parts was detected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing greenhouse light transmission has a positive effect not only in Northern latitudes but in Mediterranean countries as well. A greenhouse, H2, with a tetrafluoroethylene copolymer 60 microns film, (Asahi Glass company, Aflex) characterised by its high light transmission and durability was compared to another greenhouse with a co-extruded film considered as a control, H1. Tomato crop response to the increase in light during winter and summer with high temperature and light was evaluated. Light transmission in H2 remained very high in spite of the observed dust accumulation and the low angle of incidence of the winter solar radiation. Transmissivity was clearly higher for H2 (81 to 83 % throughout the season) than in the control (around 63 %). The rest of the climatic parameters were similar in both greenhouses, either in the winter or in the summer evaluations. In spite of the high solar radiation in H2, the summer temperature could be maintained at the desired levels by using evaporative cooling. Accumulated tomato yield and quality was better in the H2 greenhouse (15 % more for the winter crop and 27% more for the summer crop). Fruit size was bigger in the winter crop. As an overall conclusion, the use of high light transmissive films in Mediterranean areas is very convenient for many vegetable crops. This is valid not only in winter but in summer, provided the greenhouse has good ventilation or evaporative cooling to overcome the increase in sensible heat caused by this increase in light..

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUMEN El aumento del CO2 atmosférico debido al cambio global y/o a las prácticas hortícolas promueve efectos directos sobre crecimiento vegetal y el desarrollo. Estas respuestas pueden ocurrir en ecosistemas naturales, pero también se pueden utilizar para aumentar la producción de algunas plantas y de algunos compuestos secundarios. El actual trabajo intenta estudiar los efectos del enriquecimiento atmosférico del CO2 bajo condiciones de invernadero en el crecimiento y la concentración y la composición de metabolitos secundarios de Taxus bacatta, Hypericum perforatum y Echinacea purpurea en condiciones ambientales mediterráneas. La fertilización del CO2 muestra perspectivas interesantes para la mejorara y aplicabilidad de técnicas hortícolas para aumentar productividad de plantas medicinales, a pesar de diferencias claras entre la especie. En general esta técnica promueve aumentos importantes y significativos en producción primaria y, en algunos casos, también en compuestos secundarios. Esto tiene una gran importancia hortícola porque la productividad a nivel de cosecha total aumenta, directamente porque se aumenta la concentración e indirectamente porque se aumenta la biomasa. SUMMARY The increase of atmospheric CO2 due to global change and/or horticultural practices promotes direct effects on plant growth and development. These responses may occur in natural ecosystems, but also can be used to increase the production of some plants and some secondary compounds. Present work tries to study the effects of atmospheric CO2 enrichment under greenhouse conditions on growth and in the concentration and composition of secondary metabolites of Taxus bacatta, Hypericum perforatum and Echinacea purpurea under Mediterranean environmental conditions. CO2 fertilization shows interesting perspectives to increase and improve horticultural techniques in order to increase plant medicinal productivity, in spite of clear differences among the species. In general this technique promotes important and significant increases in primary productivity and, in some cases, also in secondary compounds. This has a great horticultural relevance because the total productivity of this kind of products increase at crop level, directly because concentration is increased and /or indirectly because biomass is increased. RESUM L'augment del CO2 atmosfèric a causa del canvi global i/o a les pràctiques hortícoles promou efectes directes sobre creixement vegetal i el desenvolupament. Aquestes respostes poden ocórrer en ecosistemes naturals, però també es poden utilitzar per a augmentar la producció d'algunes plantes i d'alguns compostos secundaris. L'actual treball intenta estudiar els efectes de l'enriquiment atmosfèric del CO2 sota condicions d'hivernacle en el creixement i la concentració i la composició de metabòlits secundaris de Taxus bacatta, Hypericum perforatum i Echinacea purpurea en condicions ambientals mediterrànies. La fertilització del CO2 mostra perspectives interessants per a la millora i aplicabilitat de tècniques hortícoles per a augmentar productivitat de plantes medicinals, a pesar de diferències clares entre l'espècie. En general aquesta tècnica promou augments importants i significatius en producció primària i, en alguns casos, també en compostos secundaris. Això té una gran importància hortícola perquè la productivitat a nivell de collita total augmenta, directament perquè s'augmenta la concentració i indirectament perquè s'augmenta la biomassa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of the antimicrobial peptide (AMP) biosynthetic genes srfAA (surfactin), bacA (bacylisin), fenD (fengycin), bmyB (bacyllomicin), spaS (subtilin), and ituC (iturin) was examined in 184 isolates of Bacillus spp. obtained from plant environments (aerial, rhizosphere, soil) in the Mediterranean land area of Spain. Most strains had between two and four AMP genes whereas strains with five genes were seldom detected and none of the strains had six genes. The most frequent AMP gene markers were srfAA, bacA, bmyB, and fenD, and the most frequent genotypes srfAA-bacA-bmyB and srfAAbacA-bmyB-fenD. The dominance of these particular genes in Bacillus strains associated with plants reinforces the competitive role of surfactin, bacyllomicin, fengycin, and bacilysin in the fitness of strains in natural environments. The use of these AMP gene markers may assist in the selection of putative biological control agents of plant pathogens

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four methods were tested to assess the fire-blight disease response on grafted pear plants. The leaves of the plants were inoculated with Erwinia amylovora suspensions by pricking with clamps, cutting with scissors, local infiltration, and painting a bacterial suspension onto the leaves with a paintbrush. The effects of the inoculation methods were studied in dose-time-response experiments carried out in climate chambers under quarantine conditions. A modified Gompertz model was used to analyze the disease-time relatiobbnships and provided information on the rate of infection progression (rg) and time delay to the start of symptoms (t0). The disease-pathogen-dose relationships were analyzed according to a hyperbolic saturation model in which the median effective dose (ED50) of the pathogen and maximum disease level (ymax) were determined. Localized infiltration into the leaf mesophile resulted in the early (short t0) but slow (low rg) development of infection whereas in leaves pricked with clamps disease symptoms developed late (long t0) but rapidly (high rg). Paintbrush inoculation of the plants resulted in an incubation period of medium length, a moderate rate of infection progression, and low ymax values. In leaves inoculated with scissors, fire-blight symptoms developed early (short t0) and rapidly (high rg), and with the lowest ED50 and the highest ymax

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microorganisms interact with plants because plants offer a wide diversity of habitats including the phyllosphere (aerial plant part), the rhizosphere (zone of influence of the root system), and the endosphere (internal transport system). Interactions of epiphytes, rhizophytes or endophytes may be detrimental or beneficial for either the microorganism or the plant and may be classified as neutralism, commensalism, synergism, mutualism, amensalism, competition or parasitism

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants, like humans and other animals, also get sick, exhibit disease symptoms, and die. Plant diseases are caused by environmental stress, genetic or physiological disorders and infectious agents including viroids, viruses, bacteria and fungi. Plant pathology originated from the convergence of microbiology, botany and agronomy; its ultimate goal is the control of plant disease. Microbiologists have been attracted to this field of research because of the need for identification of the agents causing infectious diseases in economically important crops. In 1878—only two years after Pasteur and Koch had shown for the first time that anthrax in animals was caused by a bacteria—Burril, in the USA, discovered that the fire blight disease of apple and pear was also caused by a bacterium (nowadays known as Erwinia amylovora). In 1898, Beijerinck concluded that tobacco mosaic was caused by a “contagium vivum fluidum” which he called a virus. In 1971, Diener proved that a potato disease named potato spindle tuber was caused by infectious RNA which he called viroid