22 resultados para time resolved spectroscopy

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a technique to estimate and model patient-specific pulsatility of cerebral aneurysms over onecardiac cycle, using 3D rotational X-ray angiography (3DRA) acquisitions. Aneurysm pulsation is modeled as a time varying-spline tensor field representing the deformation applied to a reference volume image, thus producing the instantaneousmorphology at each time point in the cardiac cycle. The estimated deformation is obtained by matching multiple simulated projections of the deforming volume to their corresponding original projections. A weighting scheme is introduced to account for the relevance of each original projection for the selected time point. The wide coverage of the projections, together with the weighting scheme, ensures motion consistency in all directions. The technique has been tested on digital and physical phantoms that are realistic and clinically relevant in terms of geometry, pulsation and imaging conditions. Results from digital phantomexperiments demonstrate that the proposed technique is able to recover subvoxel pulsation with an error lower than 10% of the maximum pulsation in most cases. The experiments with the physical phantom allowed demonstrating the feasibility of pulsation estimation as well as identifying different pulsation regions under clinical conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-resolved imaging is carried out to study the dynamics of the laser-induced forward transfer of an aqueous solution at different laser fluences. The transfer mechanisms are elucidated, and directly correlated with the material deposited at the analyzed irradiation conditions. It is found that there exists a fluence range in which regular and well-defined droplets are deposited. In this case, laser pulse energy absorption results in the formation of a plasma, which expansion originates a cavitation bubble in the liquid. After the further expansion and collapse of the bubble, a long and uniform jet is developed, which advances at a constant velocity until it reaches the receptor substrate. On the other hand, for lower fluences no material is deposited. In this case, although a jet can be also generated, it recoils before reaching the substrate. For higher fluences, splashing is observed on the receptor substrate due to the bursting of the cavitation bubble. Finally, a discussion of the possible mechanisms which lead to such singular dynamics is also provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study how the combination of long and short laser pulses can be used to induce torsion in an axially chiral biphenyl derivative (3,5-difluoro-3 ,5 -dibromo-4 -cyanobiphenyl). A long, with respect to the molecular rotational periods, elliptically polarized laser pulse produces 3D alignment of the molecules, and a linearly polarized short pulse initiates torsion about the stereogenic axis. The torsional motion is monitored in real-time by measuring the dihedral angle using femtosecond time-resolved Coulomb explosion imaging. Within the first 4 picoseconds (ps), torsion occurs with a period of 1.25 ps and an amplitude of 3◦ in excellent agreement with theoretical calculations. At larger times, the quantum states of the molecules describing the torsional motion dephase and an almost isotropic distribution of the dihedral angle is measured.We demonstrate an original application of covariance analysis of two-dimensional ion images to reveal strong correlations between specific ejected ionic fragments from Coulomb explosion. This technique strengthens our interpretation of the experimental data

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Previously reported results on deep level optical spectroscopy, optical absorption, deep level transient spectroscopy, photoluminescence excitation, and time resolved photoluminescence are reviewed and discussed in order to know which are the mechanisms involved in electron capture and emission of the Ti acceptor level in GaP. First, the analysis indicates that the 3T1(F) crystal¿field excited state is not in resonance with the conduction band states. Second, it is shown that both the 3T2 and 3T1(F) excited states do not play any significant role in the process of electron emission and capture.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The structural and optical properties of three different kinds of GaAs nanowires with 100% zinc-blende structure and with an average of 30% and 70% wurtzite are presented. A variety of shorter and longer segments of zinc-blende or wurtzite crystal phases are observed by transmission electron microscopy in the nanowires. Sharp photoluminescence lines are observed with emission energies tuned from 1.515 eV down to 1.43 eV when the percentage of wurtzite is increased. The downward shift of the emission peaks can be understood by carrier confinement at the interfaces, in quantum wells and in random short period superlattices existent in these nanowires, assuming a staggered band offset between wurtzite and zinc-blende GaAs. The latter is confirmed also by time-resolved measurements. The extremely local nature of these optical transitions is evidenced also by cathodoluminescence measurements. Raman spectroscopy on single wires shows different strain conditions, depending on the wurtzite content which affects also the band alignments. Finally, the occurrence of the two crystallographic phases is discussed in thermodynamic terms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The preparation of [FeIV(O)(MePy2tacn)]2+ (2, MePy2tacn = N-methyl-N,N-bis(2-picolyl)-1,4,7-triazacyclononane) by reaction of [FeII(MePy2tacn)(solvent)]2+ (1) and PhIO in CH3CN and its full characterization are described. This compound can also be prepared photochemically from its iron(II) precursor by irradiation at 447 nm in the presence of catalytic amounts of [Ru II(bpy)3]2+ as photosensitizer and a sacrificial electron acceptor (Na2S2O8). Remarkably, the rate of the reaction of the photochemically prepared compound 2 toward sulfides increases 150-fold under irradiation, and 2 is partially regenerated after the sulfide has been consumed; hence, the process can be repeated several times. The origin of this rate enhancement has been established by studying the reaction of chemically generated compound 2 with sulfides under different conditions, which demonstrated that both light and [Ru II(bpy)3]2+ are necessary for the observed increase in the reaction rate. A combination of nanosecond time-resolved absorption spectroscopy with laser pulse excitation and other mechanistic studies has led to the conclusion that an electron transfer mechanism is the most plausible explanation for the observed rate enhancement. According to this mechanism, the in-situ-generated [RuIII(bpy)3] 3+ oxidizes the sulfide to form the corresponding radical cation, which is eventually oxidized by 2 to the corresponding sulfoxide

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a electroluminescence (EL) study of the Si-rich silicon oxide (SRSO) LEDs with and without Er3+ ions under different polarization schemes: direct current (DC) and pulsed voltage (PV). The power efficiency of the devices and their main optical limitations are presented. We show that under PV polarization scheme, the devices achieve one order of magnitude superior performance in comparison with DC. Time-resolved measurements have shown that this enhancement is met only for active layers in which annealing temperature is high enough (>1000 ◦C) for silicon nanocrystal (Si-nc) formation. Modeling of the system with rate equations has been done and excitation cross-sections for both Si-nc and Er3+ ions have been extracted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A laser-based technique for printing transparent and weakly absorbing liquids is developed. Its principle of operation relies in the tight focusing of short laser pulses inside the liquid and close to its free surface, in such a way that the laser radiation is absorbed in a tiny volume around the beam waist, with practically no absorption in any other location along the beam path. If the absorbed energy overcomes the optical breakdown threshold, a cavitation bubble is generated, and its expansion results in the propulsion of a small fraction of liquid which can be collected on a substrate, leading to the printing of a microdroplet for each laser pulse. The technique does not require the preparation of the liquid in thin film form, and its forward mode of operation imposes no restriction concerning the optical properties of the substrate. These characteristics make it well suited for printing a wide variety of materials of interest in diverse applications. We demonstrate that the film-free laser forward printing technique is capable of printing microdroplets with good resolution, reproducibility and control, and analyze the influence of the main process parameter, laser pulse energy. The mechanisms of liquid printing are also investigated: time-resolved imaging provides a clear picture of the dynamics of liquid transfer which allows understanding the main features observed in the printed droplets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electrically driven Er3+ doped Si slot waveguides emitting at 1530 nm are demonstrated. Two different Er3+ doped active layers were fabricated in the slot region: a pure SiO2 and a Si-rich oxide. Pulsed polarization driving of the waveguides was used to characterize the time response of the electroluminescence (EL) and of the signal probe transmission in 1 mm long waveguides. Injected carrier absorption losses modulate the EL signal and, since the carrier lifetime is much smaller than that of Er3+ ions, a sharp EL peak was observed when the polarization was switched off. A time-resolved electrical pump & probe measurement in combination with lock-in amplifier techniques allowed to quantify the injected carrier absorption losses. We found an extinction ratio of 6 dB, passive propagation losses of about 4 dB/mm, and a spectral bandwidth > 25 nm at an effective d.c. power consumption of 120 μW. All these performances suggest the usage of these devices as electro-optical modulators.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We investigate the shot noise of nonequilibrium carriers injected into a ballistic conductor and interacting via long-range Coulomb forces. Coulomb interactions are shown to act as an energy analyzer of the profile of injected electrons by means of the fluctuations of the potential barrier at the emitter contact. We show that the details in the energy profile can be extracted from shot-noise measurements in the Coulomb interaction regime, but cannot be obtained from time-averaged quantities or shot-noise measurements in the absence of interactions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work a new admittance spectroscopy technique is proposed to determine the conduction band offset in single quantum well structures (SQW). The proposed technique is based on the study of the capacitance derivative versus the frequency logarithm. This method is found to be less sensitive to parasitic effects, such as leakage current and series resistance, than the classical conductance analysis. Using this technique, we have determined the conduction band offset in In0.52Al0.48As/InxGa1¿xAs/In0.52Al0.48As SQW structures. Two different well compositions, x=0.53, which corresponds to the lattice¿matched case and x=0.60, which corresponds to a strained case, and two well widths (5 and 25 nm) have been considered. The average results are ¿Ec=0.49±0.04 eV for x=0.53 and ¿Ec =0.51±0.04 eV for x=0.6, which are in good agreement with previous reported data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The plume generated by ablation of hydroxyapatite targets under ArF excimer laser irradiation has been investigated by means of fast intensified CCD-imaging and optical emission spectroscopy. Results have shown that the plume splits into two plasma clouds as it expands. Time and spatial resolved spectra have revealed that under the experiment conditions emission is mostly due to calcium neutral atoms and calcium oxide molecular radicals. Imaging of the plume with the aid of bandpass filters has demonstrated that the emissive species in the larger and faster plasma cloud are calcium neutral atoms, whereas in the smaller and slower one they are calcium oxide molecular radicals

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The analysis of multiexponential decays is challenging because of their complex nature. When analyzing these signals, not only the parameters, but also the orders of the models, have to be estimated. We present an improved spectroscopic technique specially suited for this purpose. The proposed algorithm combines an iterative linear filter with an iterative deconvolution method. A thorough analysis of the noise effect is presented. The performance is tested with synthetic and experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oxidation of GaAs and AlGaAs targets subjected to O2+ bombardment has been analyzed, using in situ x¿ray photoelectron spectroscopy, as a function of time until steady state is reached. The oxides formed by the O2+ bombardment have been characterized in terms of composition and binding energy. A strong energy and angular dependence for the oxidation of As relative to Ga is found. Low energies as well as near normal angles of incidence favor the oxidation of As. The difference between Ga and As can be explained in terms of the formation enthalpy for the oxide and the excess supply of oxygen. In an AlGaAs target the Al is very quickly completely oxidized irrespective of the experimental conditions. The steady state composition of the altered layers show in all cases a preferential removal of As.