9 resultados para teleostei
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
A study of the spermiogenesis and spermatozoa of Helicolenus dactylopterus was conducted. Females of this species have the capacity to store sperm within their ovaries, and male gametes have a considerable cytoplasmic mass surrounding their heads to survive the long period of intraovarian sperm storage. Our observations show that early spermatids are round-shaped cells and have a spherical nucleus with diffuse chromatin. The nuclear volume decreases as a result of progressive chromatin condensation during spermiogenesis, causing the nucleus to take on a U-shape. Flagellar insertion is not central to the nucleus but consistently occurs at an oblique angle towards one side of it. The flagellum is inserted into the nuclear fossa, without subsequent nuclear rotation. In mature spermatozoa, the flagellum is adjacent to the nucleus. A comparison of the spermatozoa in the testicular lobules and those in the intraovarian storage structures suggests that the increase in volume of the cytoplasmic mass may occur in the posterior region of the testis, in the testicular duct. Spermatozoa enter the ovary in groups that reach the ovarian lumen and are surrounded by the ovarian epithelium for storage in sperm storage crypts
Resumo:
Scorpaena notata (Teleostei: Scorpaenidae) is an oviparous species with external fertilisation that shows some unusual features in its gonadal morphology and gametogenesis. In this work we analyse the annual reproductive cycle and the fecundity of this species by studying the monthly histological changes in the gonads and of various indices related to reproduction. Sexual dimorphism does not occur in the population we studied, which is clearly dominated by males. Multiple spawning takes place between July and October, consisting of between 6,000 and 33,000 eggs per female, each of about 500 µm in diameter. The fecundity of the species is determined by the size and weight of the individuals
Resumo:
We compared specimens of Tripterygion tripteronotus from 52 localities of the Mediterranean Sea and adjacent waters, using four gene sequences (12S rRNA, tRNA-valine, 16S rRNA and COI) and morphological characters. Two well-differentiated clades with a mean genetic divergence of 6.89±0.73% were found with molecular data, indicating the existence of two different species. These two species have disjunctive geographic distribution areas without any molecular hybrid populations. Subtle but diagnostic morphological differences were also present between the two species. T. tripteronotus is restricted to the northern Mediterranean basin, from the NE coast of Spain to Greece and Turkey, including the islands of Malta and Cyprus. T. tartessicum n. sp. is geographically distributed along the southern coast of Spain, from Cape of La Nao to the Gulf of Cadiz, the Balearic Islands and northern Africa, from Morocco to Tunisia. According to molecular data, these two species could have diverged during the Pliocene glaciations 2.7-3.6 Mya.
Resumo:
The Goliath grouper, Epinephelus itajara, a large-bodied (similar to 2.5 m TL, > 400 kg) and critically endangered fish (Epinephelidae), is highly Vulnerable to overfishing. Although protected from fishing in many countries, its exploitation in Mexico is unregulated; a situation that puts its populations at risk. Fishery records of E. itajara are scarce, which prevents determination of its fishery status. This work aimed to elucidate the E itajara fishery in the northern Yucatan Peninsula by 1) analyzing available catch records and 2) interviewing veteran fishermen (local ecological knowledge) from two traditional landing sites: Dzilam de Bravo and Puerto Progreso. Historic fishery records from two fishing cooperatives were analyzed in order to elucidate the current situation and offer viable alternatives for conservation and management. Catches have decreased severely. Local knowledge obtained from fishermen represented a very important source of information for reconstructing the fisheries history of this species. Conservation measures that incorporate regional and international regulations on critically endangered fish species are suggested
Resumo:
Spermiogenesis in Robphildollfusium fractum begins with the formation of a differentiation zone containing: two centrioles, each bearing striated rootlets, nucleus, several mitochondria and an intercentriolar body constituted by seven electron-dense layers. The two centrioles originate two free flagella growing orthogonally to the median cytoplasmic process. Later, the free flagella rotate and undergo proximodistal fusion with the median cytoplasmic process. Nuclear and mitochondrial migrations occur before this proximodistal fusion. Finally, the young spermatozoon detaches from the residual cytoplasm after the constriction of the ring of arched membranes. The spermatozoon of R. fractum exhibits two axonemes of different length of the 9 +"1" trepaxonematan pattern, nucleus, two mitochondria, two bundles of parallel cortical microtubules, external ornamentation of the plasma membrane, spine-like bodies and granules of glycogen. Additionally, a shorter axoneme, which does not reach the nuclear region, the presence of an electron-dense material in the anterior spermatozoon extremity and the morphologies of both spermatozoon extremities characterize the mature sperm of R. fractum.
Resumo:
Spermiogenesis in Robphildollfusium fractum begins with the formation of a differentiation zone containing: two centrioles, each bearing striated rootlets, nucleus, several mitochondria and an intercentriolar body constituted by seven electron-dense layers. The two centrioles originate two free flagella growing orthogonally to the median cytoplasmic process. Later, the free flagella rotate and undergo proximodistal fusion with the median cytoplasmic process. Nuclear and mitochondrial migrations occur before this proximodistal fusion. Finally, the young spermatozoon detaches from the residual cytoplasm after the constriction of the ring of arched membranes. The spermatozoon of R. fractum exhibits two axonemes of different length of the 9 +"1" trepaxonematan pattern, nucleus, two mitochondria, two bundles of parallel cortical microtubules, external ornamentation of the plasma membrane, spine-like bodies and granules of glycogen. Additionally, a shorter axoneme, which does not reach the nuclear region, the presence of an electron-dense material in the anterior spermatozoon extremity and the morphologies of both spermatozoon extremities characterize the mature sperm of R. fractum.
Resumo:
The ultrastructural organization of the spermatozoon of the digenean Hypocreadium caputvadum (Lepocreadioidea: Lepocreadiidae) is described. Live digeneans were collected from Balistes capriscus (Teleostei: Balistidae) from the Gulf of Gabès, Tunisia (Eastern Mediterranean Sea). The mature spermatozoon of H. caputvadum shows several ultrastructural characters such as two axonemes of different lengths exhibiting the classical 9 +"1" trepaxonematan pattern, a nucleus, two mitochondria, granules of glycogen, external ornamentation of the plasma membrane and two bundles of parallel cortical microtubules. Moreover, in the anterior extremity, the second axoneme is partly surrounded by a discontinuous and submembranous layer of electron-dense material. Our study provides new data on the spermatozoon of H. caputvadum in order to improve the understanding of phylogenetic relationships in the Digenea, particularly in the superfamily Lepocreadioidea. In this context, the electron-dense material surrounding one of the axonemes in the anterior spermatozoon extremity constitutes the unique distinguishing ultrastructural character of lepocreadioideans, and it is present in spermatozoa of lepocreadiids, aephnidiogenids and gyliauchenids.
Resumo:
The ultrastructural organization of the spermatozoon of the digenean Hypocreadium caputvadum (Lepocreadioidea: Lepocreadiidae) is described. Live digeneans were collected from Balistes capriscus (Teleostei: Balistidae) from the Gulf of Gabès, Tunisia (Eastern Mediterranean Sea). The mature spermatozoon of H. caputvadum shows several ultrastructural characters such as two axonemes of different lengths exhibiting the classical 9 +"1" trepaxonematan pattern, a nucleus, two mitochondria, granules of glycogen, external ornamentation of the plasma membrane and two bundles of parallel cortical microtubules. Moreover, in the anterior extremity, the second axoneme is partly surrounded by a discontinuous and submembranous layer of electron-dense material. Our study provides new data on the spermatozoon of H. caputvadum in order to improve the understanding of phylogenetic relationships in the Digenea, particularly in the superfamily Lepocreadioidea. In this context, the electron-dense material surrounding one of the axonemes in the anterior spermatozoon extremity constitutes the unique distinguishing ultrastructural character of lepocreadioideans, and it is present in spermatozoa of lepocreadiids, aephnidiogenids and gyliauchenids.
Resumo:
Genome duplications increase genetic diversity and may facilitate the evolution of gene subfunctions. Little attention, however, has focused on the evolutionary impact of lineage-specific gene loss. Here, we show that identifying lineage-specific gene loss after genome duplication is important for understanding the evolution of gene subfunctions in surviving paralogs and for improving functional connectivity among human and model organism genomes. We examine the general principles of gene loss following duplication, coupled with expression analysis of the retinaldehyde dehydrogenase Aldh1a gene family during retinoic acid signaling in eye development as a case study. Humans have three ALDH1A genes, but teleosts have just one or two. We used comparative genomics and conserved syntenies to identify loss of ohnologs (paralogs derived from genome duplication) and to clarify uncertain phylogenies. Analysis showed that Aldh1a1 and Aldh1a2 form a clade that is sister to Aldh1a3-related genes. Genome comparisons showed secondarily loss of aldh1a1 in teleosts, revealing that Aldh1a1 is not a tetrapod innovation and that aldh1a3 was recently lost in medaka, making it the first known vertebrate with a single aldh1a gene. Interestingly, results revealed asymmetric distribution of surviving ohnologs between co-orthologous teleost chromosome segments, suggesting that local genome architecture can influence ohnolog survival. We propose a model that reconstructs the chromosomal history of the Aldh1a family in the ancestral vertebrate genome, coupled with the evolution of gene functions in surviving Aldh1a ohnologs after R1, R2, and R3 genome duplications. Results provide evidence for early subfunctionalization and late subfunction-partitioning and suggest a mechanistic model based on altered regulation leading to heterochronic gene expression to explain the acquisition or modification of subfunctions by surviving ohnologs that preserve unaltered ancestral developmental programs in the face of gene loss.