3 resultados para tamanho genômico
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
La gestión de recursos en los procesadores multi-core ha ganado importancia con la evolución de las aplicaciones y arquitecturas. Pero esta gestión es muy compleja. Por ejemplo, una misma aplicación paralela ejecutada múltiples veces con los mismos datos de entrada, en un único nodo multi-core, puede tener tiempos de ejecución muy variables. Hay múltiples factores hardware y software que afectan al rendimiento. La forma en que los recursos hardware (cómputo y memoria) se asignan a los procesos o threads, posiblemente de varias aplicaciones que compiten entre sí, es fundamental para determinar este rendimiento. La diferencia entre hacer la asignación de recursos sin conocer la verdadera necesidad de la aplicación, frente a asignación con una meta específica es cada vez mayor. La mejor manera de realizar esta asignación és automáticamente, con una mínima intervención del programador. Es importante destacar, que la forma en que la aplicación se ejecuta en una arquitectura no necesariamente es la más adecuada, y esta situación puede mejorarse a través de la gestión adecuada de los recursos disponibles. Una apropiada gestión de recursos puede ofrecer ventajas tanto al desarrollador de las aplicaciones, como al entorno informático donde ésta se ejecuta, permitiendo un mayor número de aplicaciones en ejecución con la misma cantidad de recursos. Así mismo, esta gestión de recursos no requeriría introducir cambios a la aplicación, o a su estrategia operativa. A fin de proponer políticas para la gestión de los recursos, se analizó el comportamiento de aplicaciones intensivas de cómputo e intensivas de memoria. Este análisis se llevó a cabo a través del estudio de los parámetros de ubicación entre los cores, la necesidad de usar la memoria compartida, el tamaño de la carga de entrada, la distribución de los datos dentro del procesador y la granularidad de trabajo. Nuestro objetivo es identificar cómo estos parámetros influyen en la eficiencia de la ejecución, identificar cuellos de botella y proponer posibles mejoras. Otra propuesta es adaptar las estrategias ya utilizadas por el Scheduler con el fin de obtener mejores resultados.
Resumo:
L’èxit del Projecte Genoma Humà (PGH) l’any 2000 va fer de la “medicina personalitzada” una realitat més propera. Els descobriments del PGH han simplificat les tècniques de seqüenciació de tal manera que actualment qualsevol persona pot aconseguir la seva seqüència d’ADN complerta. La tecnologia de Read Mapping destaca en aquest tipus de tècniques i es caracteritza per manegar una gran quantitat de dades. Hadoop, el framework d’Apache per aplicacions intensives de dades sota el paradigma Map Reduce, resulta un aliat perfecte per aquest tipus de tecnologia i ha sigut l’opció escollida per a realitzar aquest projecte. Durant tot el treball es realitza l’estudi, l’anàlisi i les experimentacions necessàries per aconseguir un Algorisme Genètic innovador que utilitzi tot el potencial de Hadoop.
Resumo:
a partir de ADN genómico obtenido de las células nucleadas de sangre periférica de 103 pacientes con Cáncer de Pulmón No Microcítico (CPNM) avanzado tratados con quimioterapia basada en platino, hemos analizado la asociación entre supervivencia y cinco SNPs (Single Nucleotide Polymorphism) pertenecientes a dos grupos de genes: i) de la via metabólica del ácido fólico (Timidilato Sintetasa (TS), Metil-tetrahidrofolato Reductasa (MTHFR) y, ii) de la vía de reparación del ADN (Excision repair cross-complemeting group 1 (ERCC1) y Xeroderma pigmentosum group D (XPD).