8 resultados para symbiont fungus

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Symbiotic interactions between ascidians (sea-squirts) and microbes are poorly understood. Here we characterized the cyanobacteria in the tissues of 8 distinct didemnid taxa from shallow-water marine habitats in the Bahamas Islands by sequencing a fragment of the cyanobacterial 16S rRNA gene and the entire 16S-23S rRNA internal transcribed spacer region (ITS) and by examining symbiont morphology with transmission electron (TEM) and confocal microscopy (CM). As described previously for other species, Trididemnum spp. mostly contained symbionts associated with the Prochloron-Synechocystis group. However, sequence analysis of the symbionts in Lissoclinum revealed two unique clades. The first contained a novel cyanobacterial clade, while the second clade was closely associated with Acaryochloris marina. CM revealed the presence of chlorophyll d (chl d) and phycobiliproteins (PBPs) within these symbiont cells, as is characteristic of Acaryochloris species. The presence of symbionts was also observed by TEM inside the tunic of both the adult and larvae of L. fragile, indicating vertical transmission to progeny. Based on molecular phylogenetic and microscopic analyses, Candidatus Acaryochloris bahamiensis nov. sp. is proposed for this symbiotic cyanobacterium. Our results support the hypothesis that photosymbiont communities in ascidians are structured by host phylogeny, but in some cases, also by sampling location.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cofoundresses of the desert fungus garden ant Acromyrmex versicolorexhibit a forager specialist who subsumes all foraging risk priorto first worker eclosion (Rissing et al. 1989). In an experimentdesigned to mimic a "cheater" who refuses foraging assignment whenher lot, cofoundresses delayed/failed to replace their forager,often leading to demise of their garden (Rissing et al. 1996). Thecheater on task assignment is harmed, but so too is the punisher,as all will die without a healthy garden. In this paper we studythrough simulation the cofoundress interaction with haploid, asexualgenotypes which either replace a cheater or not (punishment), underboth foundress viscosity (likely for A. versicolor) and randomassortment. We find replacement superior to punishment only whenthere is no foraging risk and cheating is not costly to groupsurvival. Generally, punishment is evolutionarily superior,especially as forager risk increases, under both forms of dispersal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composts are the products obtained after the aerobic degradation of different types of organic matter waste and can be used as substrates or substrate/soil amendments for plant cultivation. There is a small but increasing number of reports that suggest that foliar diseases may be reduced when using compost, rather than standard substrates, as growing medium. The purpose of this study was to examine the gene expression alteration produced by the compost to gain knowledge of the mechanisms involved in compost-induced systemic resistance. A compost from olive marc and olive tree leaves was able to induce resistance against Botrytis cinerea in Arabidopsis, unlike the standard substrate, perlite. Microarray analyses revealed that 178 genes were differently expressed, with a fold change cut-off of 1, of which 155 were up-regulated and 23 were down-regulated in compost-grown, as against perlite-grown plants. A functional enrichment study of up-regulated genes revealed that 38 Gene Ontology terms were significantly enriched. Response to stress, biotic stimulus, other organism, bacterium, fungus, chemical and abiotic stimulus, SA and ABA stimulus, oxidative stress, water, temperature and cold were significantly enriched, as were immune and defense responses, systemic acquired resistance, secondary metabolic process and oxireductase activity. Interestingly, PR1 expression, which was equally enhanced by growing the plants in compost and by B. cinerea inoculation, was further boosted in compost-grown pathogen-inoculated plants. Compost triggered a plant response that shares similarities with both systemic acquired resistance and ABA-dependent/independent abiotic stress responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cultivation of black truffle, Tuber melanosporum Vitt., has become an important agricultural alternative in rural Mediterranean regions due to its success in relatively harsh conditions, its high market value and diminishing production in natural areas. In addition, truffle cultivation requires relatively low agricultural inputs, promotes reforestation and economic restoration of rural lands and land-use stability. However, there remain major issues regarding the management practices to ensure successful black truffle production. We therefore conducted an experiment to evaluate 3 levels of irrigation based on monthly water deficit and the effects of currently applied weed control systems and fertilization. Treatment effects were evaluated by examining the mycorrhizal status of out-planted 1-yr-old Quercus ilex L. seedlings and seedling growth parameters after 18 months in 3 distinct experimental truffle plantations located in the foothills of the Spanish Pyrenees. We found that replacing one-half of the water deficit of the driest month (moderate irrigation) promoted the proliferation of T. melanosporum mycorrhizae, while high irrigation reduced fine root production and truffle mycorrhizae. Glyphosate weed control improved seedling survival by up to 16% over control seedlings without jeopardizing truffle mycorrhizae in the first year. Fertilization did not improve seedling growth or influence its mycorrhizal status. We describe the persistent relationship between this ectomycorrhizal fungus and Q. ilex by quantifying old and new mycorrhizae and we discuss the ecological implications of the symbiosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study on the taxonomy, morphology and anatomy of the lichenicolous species of the genus Cercidospora (Dothideales, incertae sedis) growing on lichens of the genera Lecanora (Lecanoraceae), specifically of the L. polytropa group and the L. saxicola group (i.e. L. muralis sensu auct. group, Protoparmeliopsis spp.), Rhizoplaca (Lecanoraceae) and Squamarina (Stereocaulaceae) is presented. The following species are proposed as new: Cercidospora barrenoana on Rhizoplaca peltata, and C. melanophthalmae on Rhizoplaca melanophthalma. C. stenotropae is proposed provisionally; this fungus grows on Lecanora stenotropa and other taxa of the L. polytropa group. A key for the species of the genus Cercidospora treated is provided.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All the experimental part of this final project was done at Laboratoire de Biotechnologie Environnementale (LBE) from the École Polytechnique Fédérale de Lausanne (EPFL), Switzerland, during 6 months (November 2013- May 2014). A fungal biofilter composed of woodchips was designed in order to remove micropollutants from the effluents of waste water treatment plants. Two fungi were tested: Pleurotus ostreatus and Trametes versicolor in order to evaluate their efficiency for the removal of two micropollutants: the anti-inflammatory drug naproxen and the antibiotic sulfamethoxazole,. Although Trametes versicolor was able to degrade quickly naproxen, this fungus was not any more active after one week of operation in the filter. Pleurotus ostreatus was, on contrary, able to survive more than 3 months in the filter, showing good removal efficiencies of naproxen and sulfamethoxazole during all this period, in tap water but also in real treated municipal wastewater. Several other experiments have provided insight on the removal mechanisms of these micropollutants in the fungal biofilter (degradation and adsorption) and also allowed to model the removal trend. Fungal treatment with Pleurotus ostreatus grown on wood substrates appeared to be a promising solution to improve micropollutants removal in wastewater.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents a study about the elimination of anticancer drugs, a group of pollutants considered recalcitrant during conventional activated sludge wastewater treatment, using a biological treatment based on the fungus Trametes versicolor. A 10-L fluidized bed bioreactor inoculated with this fungus was set up in order to evaluate the removal of 10 selected anticancer drugs in real hospital wastewater. Almost all the tested anticancer drugs were completely removed from the wastewater at the end of the batch experiment (8 d) with the exception of Ifosfamide and Tamoxifen. These two recalcitrant compounds, together with Cyclophosphamide, were selected for further studies to test their degradability by T. versicolor under optimal growth conditions. Cyclophosphamide and Ifosfamide were inalterable during batch experiments both at high and low concentration, whereas Tamoxifen exhibited a decrease in its concentration along the treatment. Two positional isomers of a hydroxylated form of Tamoxifen were identified during this experiment using a high resolution mass spectrometry based on ultra-high performance chromatography coupled to an Orbitrap detector (LTQ-Velos Orbitrap). Finally the identified transformation products of Tamoxifen were monitored in the bioreactor run with real hospital wastewater