4 resultados para swd: Multimodal System

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Report for the scientific sojourn carried out at the University Medical Center, Swiss, from 2010 to 2012. Abundant evidence suggests that negative emotional stimuli are prioritized in the perceptual systems, eliciting enhanced neural responses in early sensory regions as compared with neutral information. This facilitated detection is generally paralleled by larger neural responses in early sensory areas, relative to the processing of neutral information. In this sense, the amygdala and other limbic regions, such as the orbitofrontal cortex, may play a critical role by sending modulatory projections onto the sensory cortices via direct or indirect feedback.The present project aimed at investigating two important issues regarding these mechanisms of emotional attention, by means of functional magnetic resonance imaging. In Study I, we examined the modulatory effects of visual emotion signals on the processing of task-irrelevant visual, auditory, and somatosensory input, that is, the intramodal and crossmodal effects of emotional attention. We observed that brain responses to auditory and tactile stimulation were enhanced during the processing of visual emotional stimuli, as compared to neutral, in bilateral primary auditory and somatosensory cortices, respectively. However, brain responses to visual task-irrelevant stimulation were diminished in left primary and secondary visual cortices in the same conditions. The results also suggested the existence of a multimodal network associated with emotional attention, presumably involving mediofrontal, temporal and orbitofrontal regions Finally, Study II examined the different brain responses along the low-level visual pathways and limbic regions, as a function of the number of retinal spikes during visual emotional processing. The experiment used stimuli resulting from an algorithm that simulates how the visual system perceives a visual input after a given number of retinal spikes. The results validated the visual model in human subjects and suggested differential emotional responses in the amygdala and visual regions as a function of spike-levels. A list of publications resulting from work in the host laboratory is included in the report.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Report for the scientific sojourn carried out at the University Medical Center, Swiss, from 2010 to 2012. Abundant evidence suggests that negative emotional stimuli are prioritized in the perceptual systems, eliciting enhanced neural responses in early sensory regions as compared with neutral information. This facilitated detection is generally paralleled by larger neural responses in early sensory areas, relative to the processing of neutral information. In this sense, the amygdala and other limbic regions, such as the orbitofrontal cortex, may play a critical role by sending modulatory projections onto the sensory cortices via direct or indirect feedback.The present project aimed at investigating two important issues regarding these mechanisms of emotional attention, by means of functional magnetic resonance imaging. In Study I, we examined the modulatory effects of visual emotion signals on the processing of task-irrelevant visual, auditory, and somatosensory input, that is, the intramodal and crossmodal effects of emotional attention. We observed that brain responses to auditory and tactile stimulation were enhanced during the processing of visual emotional stimuli, as compared to neutral, in bilateral primary auditory and somatosensory cortices, respectively. However, brain responses to visual task-irrelevant stimulation were diminished in left primary and secondary visual cortices in the same conditions. The results also suggested the existence of a multimodal network associated with emotional attention, presumably involving mediofrontal, temporal and orbitofrontal regions Finally, Study II examined the different brain responses along the low-level visual pathways and limbic regions, as a function of the number of retinal spikes during visual emotional processing. The experiment used stimuli resulting from an algorithm that simulates how the visual system perceives a visual input after a given number of retinal spikes. The results validated the visual model in human subjects and suggested differential emotional responses in the amygdala and visual regions as a function of spike-levels. A list of publications resulting from work in the host laboratory is included in the report.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the use of our multimodal mixed reality telecommunication system to support remote acting rehearsal. The rehearsals involved two actors, located in London and Barcelona, and a director in another location in London. This triadic audiovisual telecommunication was performed in a spatial and multimodal collaborative mixed reality environment based on the 'destination-visitor' paradigm, which we define and put into use. We detail our heterogeneous system architecture, which spans the three distributed and technologically asymmetric sites, and features a range of capture, display, and transmission technologies. The actors' and director's experience of rehearsing a scene via the system are then discussed, exploring successes and failures of this heterogeneous form of telecollaboration. Overall, the common spatial frame of reference presented by the system to all parties was highly conducive to theatrical acting and directing, allowing blocking, gross gesture, and unambiguous instruction to be issued. The relative inexpressivity of the actors' embodiments was identified as the central limitation of the telecommunication, meaning that moments relying on performing and reacting to consequential facial expression and subtle gesture were less successful.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the use of our multimodal mixed reality telecommunication system to support remote acting rehearsal. The rehearsals involved two actors, located in London and Barcelona, and a director in another location in London. This triadic audiovisual telecommunication was performed in a spatial and multimodal collaborative mixed reality environment based on the 'destination-visitor' paradigm, which we define and put into use. We detail our heterogeneous system architecture, which spans the three distributed and technologically asymmetric sites, and features a range of capture, display, and transmission technologies. The actors' and director's experience of rehearsing a scene via the system are then discussed, exploring successes and failures of this heterogeneous form of telecollaboration. Overall, the common spatial frame of reference presented by the system to all parties was highly conducive to theatrical acting and directing, allowing blocking, gross gesture, and unambiguous instruction to be issued. The relative inexpressivity of the actors' embodiments was identified as the central limitation of the telecommunication, meaning that moments relying on performing and reacting to consequential facial expression and subtle gesture were less successful.