32 resultados para submarine landslides
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Within last few years a new type of instruments called Terrestrial Laser Scanners (TLS) entered to the commercial market. These devices brought a possibility to obtain completely new type of spatial, three dimensional data describing the object of interest. TLS instruments are generating a type of data that needs a special treatment. Appearance of this technique made possible to monitor deformations of very large objects, like investigated here landslides, with new quality level. This change is visible especially with relation to the size and number of the details that can be observed with this new method. Taking into account this context presented here work is oriented on recognition and characterization of raw data received from the TLS instruments as well as processing phases, tools and techniques to do them. Main objective are definition and recognition of the problems related with usage of the TLS data, characterization of the quality single point generated by TLS, description and investigation of the TLS processing approach for landslides deformation measurements allowing to obtain 3D deformation characteristic and finally validation of the obtained results. The above objectives are based on the bibliography studies and research work followed by several experiments that will prove the conclusions.
Resumo:
The morphological characterisation of the western submarine island flanks of El Hierro and La Palma differentiates four type-zones that may give new insights into the evolution of oceanic island slopes. The different type-zones result from the interplay between constructive volcanic processes, hemipelagic settling and volcano collapses. The latter results in massive debris avalanche deposits, which form large volcaniclastic aprons. In most cases, the headwall scarps are clearly exposed on the emerged part of the islands. The events that occurred in the youngest and westernmost islands of El Hierro and La Palma have vertical runouts exceeding 6,000 m and volumes that can reach several hundred km3. The landslide frequency for the entire Canaries is one major event per 90 ka. Triggering mechanisms are closely related to magmatic processes. The increase in the shear stress is directly linked with the forceful intrusion of magma along ridge-rift systems, while in the western Canary Islands it seems that the main process reducing shear resistance may be related to the rise in pore pressure due to hydrothermal circulation.
Resumo:
The nycthemeralmigration of Hemimysis speluncola Ledoyer (1963) (Crustacea: Mysidacea)from a western Mediterranean cave to the open sea was studied in July andSeptember 1985 and September 1986. Light was the initiating factor. Feeding isthe main activity outside the cave. A mixture of assorted small organisms anddetritus makes up the mysids diet.
Resumo:
Seismic methods used in the study of snow avalanches may be employed to detect and characterize landslides and other mass movements, using standard spectrogram/sonogram analysis. For snow avalanches, the spectrogram for a station that is approached by a sliding mass exhibits a triangular time/frequency signature due to an increase over time in the higher-frequency constituents. Recognition of this characteristic footprint in a spectrogram suggests a useful metric for identifying other mass-movement events such as landslides. The 1 June 2005 slide at Laguna Beach, California is examined using data obtained from the Caltech/USGS Regional Seismic Network. This event exhibits the same general spectrogram features observed in studies of Alpine snow avalanches. We propose that these features are due to the systematic relative increase in high-frequency energy transmitted to a seismometer in the path of a mass slide owing to a reduction of distance from the source signal. This phenomenon is related to the path of the waves whose high frequencies are less attenuated as they traverse shorter source-receiver paths. Entrainment of material in the course of the slide may also contribute to the triangular time/frequency signature as a consequence of the increase in the energy involved in the process; in this case the contribution would be a source effect. By applying this commonly observed characteristic to routine monitoring algorithms, along with custom adjustments for local site effects, we seek to contribute to the improvement in automatic detection and monitoring methods of landslides and other mass movements.
Resumo:
Particle fluxes (including major components and grain size), and oceanographic parameters (near-bottom water temperature, current speed and suspended sediment concentration) were measured along the Cap de Creus submarine canyon in the Gulf of Lions (GoL; NW Mediterranean Sea) during two consecutive winter-spring periods (2009 2010 and 2010 2011). The comparison of data obtained with the measurements of meteorological and hydrological parameters (wind speed, turbulent heat flux, river discharge) have shown the important role of atmospheric forcings in transporting particulate matter through the submarine canyon and towards the deep sea. Indeed, atmospheric forcing during 2009 2010 and 2010 2011 winter months showed differences in both intensity and persistence that led to distinct oceanographic responses. Persistent dry northern winds caused strong heat losses (14.2 × 103 W m−2) in winter 2009 2010 that triggered a pronounced sea surface cooling compared to winter 2010 2011 (1.6 × 103 W m−2 lower). As a consequence, a large volume of dense shelf water formed in winter 2009 2010, which cascaded at high speed (up to ∼1 m s−1) down Cap de Creus Canyon as measured by a current-meter in the head of the canyon. The lower heat losses recorded in winter 2010 2011, together with an increased river discharge, resulted in lowered density waters over the shelf, thus preventing the formation and downslope transport of dense shelf water. High total mass fluxes (up to 84.9 g m−2 d−1) recorded in winter-spring 2009 2010 indicate that dense shelf water cascading resuspended and transported sediments at least down to the middle canyon. Sediment fluxes were lower (28.9 g m−2 d−1) under the quieter conditions of winter 2010 2011. The dominance of the lithogenic fraction in mass fluxes during the two winter-spring periods points to a resuspension origin for most of the particles transported down canyon. The variability in organic matter and opal contents relates to seasonally controlled inputs associated with the plankton spring bloom during March and April of both years.
Resumo:
On 21 April 2007, an Mw 6.2 earthquake produced an unforeseen chain of events in the Aysén fjord (Chilean Patagonia, 45.5°S). The earthquake triggered hundreds of subaerial landslides along the fjord flanks. Some of the landslides eventually involved a subaqueous component that, in turn, generated a series of displacement waves tsunami- like waves produced by the fast entry of a ubaerial landmass into a water body within the fjord [Naranjo et al., 2009; Sepúlveda and Serey, 2009; Hermanns et al., 2013]. These waves, with run-ups several meters high along the shoreline, caused 10 fatalities. In addition, they severely damaged salmon farms, which constitute the main economic activity in the region, setting free millions of cultivated salmon with still unknown ecological consequences.
Resumo:
We analyse the variations produced on tsunami propagation and impact over a straight coastline because of the presence of a submarine canyon incised in the continental margin. For ease of calculation we assume that the shoreline and the shelf edge are parallel and that the incident wave approaches them normally. A total of 512 synthetic scenarios have been computed by combining the bathymetry of a continental margin incised by a parameterised single canyon and the incident tsunami waves. The margin bathymetry, the canyon and the tsunami waves have been generated using mathematical functions (e.g. Gaussian). Canyon parameters analysed are: (i) incision length into the continental shelf, which for a constant shelf width relates directly to the distance from the canyon head to the coast, (ii) canyon width, and (iii) canyon orientation with respect to the shoreline. Tsunami wave parameters considered are period and sign. The COMCOT tsunami model from Cornell University was applied to propagate the waves across the synthetic bathymetric surfaces. Five simulations of tsunami propagation over a non-canyoned margin were also performed for reference. The analysis of the results reveals a strong variation of tsunami arrival times and amplitudes reaching the coastline when a tsunami wave travels over a submarine canyon, with changing maximum height location and alongshore extension. In general, the presence of a submarine canyon lowers the arrival time to the shoreline but prevents wave build-up just over the canyon axis. This leads to a decrease in tsunami amplitude at the coastal stretch located just shoreward of the canyon head, which results in a lower run-up in comparison with a non-canyoned margin. Contrarily, an increased wave build-up occurs on both sides of the canyon head, generating two coastal stretches with an enhanced run-up. These aggravated or reduced tsunami effects are modified with (i) proximity of the canyon tip to the coast, amplifying the wave height, (ii) canyon width, enlarging the areas with lower and higher maximum height wave along the coastline, and (iii) canyon obliquity with respect to the shoreline and shelf edge, increasing wave height shoreward of the leeward flank of the canyon. Moreover, the presence of a submarine canyon near the coast produces a variation of wave energy along the shore, eventually resulting in edge waves shoreward of the canyon head. Edge waves subsequently spread out alongshore reaching significant amplitudes especially when coupling with tsunami secondary waves occurs. Model results have been groundtruthed using the actual bathymetry of Blanes Canyon area in the North Catalan margin. This paper underlines the effects of the presence, morphology and orientation of submarine canyons as a determining factor on tsunami propagation and impact, which could prevail over other effects deriving from coastal configuration.
Resumo:
The aim of this project is to evaluate the importance of submarine groundwater discharge sector in order to improve the water balance in Málaga-Granada region. The approach of this study arose from the the geology and the aquifers that indicate that there could be some discharge to the sea between Maro (Málaga) and Almuñécar (Granada) and the Andalusian’s Government and its Water Agence were really interested in evaluating it because there is a lot of population and few water available and the magnitude of groundwater discharge has generated controversy. Is well known that water is a scarce resource in this area and it’s very important for the society and for the environment. The legislation, the water policies, the knowledge of the aquifer and the geology, the water dynamics, the land use and the water perception in the society might help the management of this resource not just in Andalusia but in all the Mediterranean basin. The main objective is to evaluate the submarine groundwater discharge from the Alberquillas Aqufier to the sea by measuring 222Rn and Ra isotopes. Specific objectives have been established to achieve the main objective: A) Reveal the importance of water resources in the Mediterranean basin; B) Learn radiometric techniques for the study of groundwater discharge to the sea; C) Learn of sampling techniques of water samples for the measurement of Ra and Rn; D) Learn the techniques for measuring Ra (RaDeCC) and Rn (RAD7); E) Interpretation and discussion of results. During this semester, and in addition of the present study in Málaga- Granada region, the author has participated in the initial phase (sampling, analysis and interpretation of preliminary results) of other research projects focused on the study of submarine groundwater discharges through the use of Ra isotopes and 222Rn. These studies have been developed in different areas, including Alt Empordà (Roses and Sant Pere Pescador), Maresme with CMIMA’s group (Mediterranean Center for Marine and Environmental Research), Delta de l’Ebre, Peñíscola and Mallorca with the IMEDEA’s group (Mediterranean Institute for Advanced Studies).
Resumo:
The bathyal faunal communities of the NW Mediterranean slopes have been studied consistently in the last two decades, with a special focus on population structure, trophic dynamics and benthopelagic coupling of commercial deep-sea decapod crustaceans and fishes (reviewed in Sardà et al. 2004) and associated species (Cartes and Sardà, 1993; Company and Sardà, 1997, 2000; Cartes et al., 2001; Company et al., 2001, 2003, 2004). One of the major topographic features in the North-western Mediterranean slope is the presence of submarine canyons. Canyons play a major role in funnelling energy and organic matter from the shelf to bathyal and abyssal depths (Puig et al., 2000), but the implications of this enhanced organic supply in the deep-sea benthic communities is still mostly unknown. Trophic supply can follow two major pathways – vertical deposition in the water column (Billett et al., 1983; Baldwin et al., 1998; Lampitt et al., 2001) or down-slope advection on the margins (Puig et al., 2001; Bethoux et al., 2002; Canals et al., 2006) – and can be a limiting factor in the deep-sea, being especially important in the oligotrophic Mediterranean Sea (Sardà et al., 2004). Differences in the quantity, quality and timing of organic matter input to the deep seafloor have been used to explain patterns of biomass and abundance in benthic communities (Levin et al., 1994; Gooday & Turley, 1990; Billett et al., 2001; Galéron et al., 2001; Puig et al., 2001; Gage, 2003) as well as other biological process and in particular the existence of seasonal reproduction (Tyler et al., 1994; Company et al., 2004 (MEPS). Reproduction is a highly energetic process tightly linked to food availability and quality.
Resumo:
Autonomous underwater vehicles (AUV) represent a challenging control problem with complex, noisy, dynamics. Nowadays, not only the continuous scientific advances in underwater robotics but the increasing number of subsea missions and its complexity ask for an automatization of submarine processes. This paper proposes a high-level control system for solving the action selection problem of an autonomous robot. The system is characterized by the use of reinforcement learning direct policy search methods (RLDPS) for learning the internal state/action mapping of some behaviors. We demonstrate its feasibility with simulated experiments using the model of our underwater robot URIS in a target following task
Resumo:
La erupción volcánica submarina de La Restinga (10 de octubre) ha permitido, por primera vez, poner en marcha el Plan Especial de Protección Civil y Atención de Emergencias por Riesgo Volcánico en la Comunidad Autónoma de Canarias. En este proyecto se ha realizado un análisis multidisciplinar de los principales elementos que han estado involucrados en la gestión de la crisis y sus repercusiones sociales, económicas y ambientales. Los resultados indican que, hoy en día, se cuenta con los medios necesarios para realizar la detección temprana y el seguimiento de procesos similares que tengan lugar en el Archipiélago pero, no obstante, sería necesario actualizar el presente Plan PEVOLCA, debido a las deficiencias detectadas. Estas deficiencias, además de afectar a la gestión del fenómeno sismo-volcánico, han provocado que se tomasen medidas de protección civil que han generado grandes repercusiones sociales y económicas en la Isla. Respecto a las consecuencias ambientales en la Reserva Marina de Punta La Restinga-Mar de Las Calmas se prevé una recuperación a corto plazo, siempre que se apliquen las medidas necesarias.
Resumo:
The landslide of Rosiana is considered the largest slope movement amongst those known in historical times in Gran Canana, Canary Islands. It has been activated at least 4 times in the last century, and in the movement of 1956, when about 3.106 m3 of materials were involved, 250 people had to be evacuated and many buildings were destroyed. The present geological hazard has lead to specific studies of the phenomenon which, once characterised, can be used as a guide for the scientific and technical works that are to be made in this or similar areas. This paper wants to increase the knowledge about the unstable mass of Rosiana by using geophysical techniques based on the method of seismic by refraction. The geophysical measues have been interpreted with the aid of the available geomorphologic data, thus obtaining a first approximation to the geometry of the slope movements
Resumo:
We present a georeferenced photomosaic of the Lucky Strike hydrothermal vent field (Mid-Atlantic Ridge, 37°18’N). The photomosaic was generated from digital photographs acquired using the ARGO II seafloor imaging system during the 1996 LUSTRE cruise, which surveyed a ~1 km2 zone and provided a coverage of ~20% of the seafloor. The photomosaic has a pixel resolution of 15 mm and encloses the areas with known active hydrothermal venting. The final mosaic is generated after an optimization that includes the automatic detection of the same benthic features across different images (feature-matching), followed by a global alignment of images based on the vehicle navigation. We also provide software to construct mosaics from large sets of images for which georeferencing information exists (location, attitude, and altitude per image), to visualize them, and to extract data. Georeferencing information can be provided by the raw navigation data (collected during the survey) or result from the optimization obtained from imatge matching. Mosaics based solely on navigation can be readily generated by any user but the optimization and global alignment of the mosaic requires a case-by-case approach for which no universally software is available. The Lucky Strike photomosaics (optimized and navigated-only) are publicly available through the Marine Geoscience Data System (MGDS, http://www.marine-geo.org). The mosaic-generating and viewing software is available through the Computer Vision and Robotics Group Web page at the University of Girona (http://eia.udg.es/_rafa/mosaicviewer.html)
Resumo:
Egesta of a cave-dwelling mysid (Hemimysis speluncola Ledoyer, 1963) was studied in a submarine cave of Medes Islands, NW Mediterranean by in situ fecal pellet collecting. Fecal pellet production and gut fullness of mysids during incubation experiments are used to estimate mysid egestion rates. Intrinsic factors related with the natural history of this species such as population structure, density of mysids, daily rhythms and pellet decomposition rates are tested for their influence on the egestion rate. The effects of methodological artifacts, such as the stress induced by both incubation and preservation procedures, are also studied. An average mysid egests about 2.5 pellets per day into the cave. The time of day is the main factor affecting egestion. The highest deposition rate is between 2 to 4 hours after sunrise when about 38 % of the total daily pellet production becomes egested. Fecal pellet morphology changes with mysid demographic classes: immature mysids produce slender and thick pellets, whereas mature mysids produce only thick pellets. Immature classes show higher percentages of full guts than mature ones. Mysid density in the incubators does not affect the results on gut fullness, but it causes a decrease in the number of pellets collected after incubation. Coprorhexia seems to be the only plausible process to explain this paradox. The incubation procedure does not increase deposition rate significantly. Time of incubation is critical because the half-life of fecal pellets is about 2.5 hours. Fixation with liquid nitrogen decreases gut fullness and also deposition rates. Higher values are obtained with 70 % ethanol and 5 % formalin solutions which show very similar results for both gut fullness and pellet deposition rates. Nevertheless, ethanol is not suitable as fixative because it enhances the opacity of the body. Several suggestions are given in order to optimize the reliability of further in situ experiments for evaluation of egesta of Hemimysis speluncola in submarine caves.
Resumo:
In October 1998, Hurricane Mitch triggered numerous landslides (mainly debris flows) in Honduras and Nicaragua, resulting in a high death toll and in considerable damage to property. The potential application of relatively simple and affordable spatial prediction models for landslide hazard mapping in developing countries was studied. Our attention was focused on a region in NW Nicaragua, one of the most severely hit places during the Mitch event. A landslide map was obtained at 1:10 000 scale in a Geographic Information System (GIS) environment from the interpretation of aerial photographs and detailed field work. In this map the terrain failure zones were distinguished from the areas within the reach of the mobilized materials. A Digital Elevation Model (DEM) with 20 m×20 m of pixel size was also employed in the study area. A comparative analysis of the terrain failures caused by Hurricane Mitch and a selection of 4 terrain factors extracted from the DEM which, contributed to the terrain instability, was carried out. Land propensity to failure was determined with the aid of a bivariate analysis and GIS tools in a terrain failure susceptibility map. In order to estimate the areas that could be affected by the path or deposition of the mobilized materials, we considered the fact that under intense rainfall events debris flows tend to travel long distances following the maximum slope and merging with the drainage network. Using the TauDEM extension for ArcGIS software we generated automatically flow lines following the maximum slope in the DEM starting from the areas prone to failure in the terrain failure susceptibility map. The areas crossed by the flow lines from each terrain failure susceptibility class correspond to the runout susceptibility classes represented in a runout susceptibility map. The study of terrain failure and runout susceptibility enabled us to obtain a spatial prediction for landslides, which could contribute to landslide risk mitigation.