112 resultados para string topology
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
This paper presents a study of connection availability in GMPLS over optical transport networks (OTN) taking into account different network topologies. Two basic path protection schemes are considered and compared with the no protection case. The selected topologies are heterogeneous in geographic coverage, network diameter, link lengths, and average node degree. Connection availability is also computed considering the reliability data of physical components and a well-known network availability model. Results show several correspondences between suitable path protection algorithms and several network topology characteristics
Resumo:
We present building blocks for algorithms for the efficient reduction of square factor, i.e. direct repetitions in strings. So the basic problem is this: given a string, compute all strings that can be obtained by reducing factors of the form zz to z. Two types of algorithms are treated: an offline algorithm is one that can compute a data structure on the given string in advance before the actual search for the square begins; in contrast, online algorithms receive all input only at the time when a request is made. For offline algorithms we treat the following problem: Let u and w be two strings such that w is obtained from u by reducing a square factor zz to only z. If we further are given the suffix table of u, how can we derive the suffix table for w without computing it from scratch? As the suffix table plays a key role in online algorithms for the detection of squares in a string, this derivation can make the iterated reduction of squares more efficient. On the other hand, we also show how a suffix array, used for the offline detection of squares, can be adapted to the new string resulting from the deletion of a square. Because the deletion is a very local change, this adaption is more eficient than the computation of the new suffix array from scratch.
Resumo:
Exact solutions of the classical equations corresponding to the leading-logarithm approximation are obtained. They are classified by an (integer) topological number.
Resumo:
The gauge-invariant actions for open and closed free bosonic string field theories are obtained from the string field equations in the conformal gauge using the cohomology operations of Banks and Peskin. For the closed-string theory no restrictions are imposed on the gauge parameters.
Resumo:
We study the Hamiltonian and Lagrangian constraints of the Polyakov string. The gauge fixing at the Hamiltonian and Lagrangian level is also studied.
Resumo:
We construct a classical nonrelativistic string model in 3+1 dimensions. The model contains a spurion tensor field that is responsible for the noncommutative structure of the model. Under double-dimensional reduction the model reduces to the exotic nonrelativistic particle in 2+1 dimensions.
Resumo:
We show that the symmetries of effective D-string actions in constant dilaton backgrounds are directly related to homothetic motions of the background metric. In the presence of such motions, there are infinitely many nonlinearly realized rigid symmetries forming a loop (or looplike) algebra. Near horizon (antideSitter) D3 and D1+D5 backgrounds are discussed in detail and shown to provide 2D interacting field theories with infinite conformal symmetry.
Resumo:
New results on the theory of constrained systems are applied to characterize the generators of Noethers symmetry transformations. As a byproduct, an algorithm to construct gauge transformations in Hamiltonian formalism is derived. This is illustrated with two relevant examples.
Resumo:
We derive the back reaction on the gravitational field of a straight cosmic string during its formation due to the gravitational coupling of the string to quantum matter fields. A very simple model of string formation is considered. The gravitational field of the string is computed in the linear approximation. The vacuum expectation value of the stress tensor of a massless scalar quantum field coupled to the string gravitational field is computed to one loop order. Finally, the back-reaction effect is obtained by solving perturbatively the semiclassical Einsteins equations.
Resumo:
An analysis of cosmic string breaking with the formation of black holes attached to the ends reveals a remarkable feature: the black holes can be correlated or uncorrelated. We find that, as a consequence, the number-of-states enhancement factor in the action governing the formation of uncorrelated black holes is twice the one for a correlated pair. We argue that when an uncorrelated pair forms at the ends of the string, the physics involved is more analogous to thermal nucleation than to particle-antiparticle creation. Also, we analyze the process of intercommuting strings induced by black hole annihilation and merging. Finally, we discuss the consequences for grand unified strings. The process whereby uncorrelated black holes are formed yields a rate which significantly improves over those previously considered, but still not enough to modify string cosmology. 1995 The American Physical Society.
Resumo:
It is shown that the world volume field theory of a single D3-brane in a supergravity D3-brane background admits finite energy, and non-singular, Abelian monopoles and dyons preserving 1/2 or 1/4 of the N=4 supersymmetry and saturating a Bogomolnyi-type bound. The 1/4 supersymmetric solitons provide a world volume realization of string-junction dyons. We also discuss the dual M-theory realization of the 1/2 supersymmetric dyons as finite tension self-dual strings on the M5-brane, and of the 1/4 supersymmetric dyons as their intersections.
Resumo:
The scalar sector of the effective low-energy six-dimensional Kaluza-Klein theory is seen to represent an anisotropic fluid composed of two perfect fluids if the extra space metric has a Euclidean signature, or a perfect fluid of geometric strings if it has an indefinite signature. The Einstein field equations with such fluids can be explicitly integrated when the four-dimensional space-time has two commuting Killing vectors.
Resumo:
We study synchronization dynamics of a population of pulse-coupled oscillators. In particular, we focus our attention on the interplay between topological disorder and synchronization features of networks. First, we analyze synchronization time T in random networks, and find a scaling law which relates T to network connectivity. Then, we compare synchronization time for several other topological configurations, characterized by a different degree of randomness. The analysis shows that regular lattices perform better than a disordered network. This fact can be understood by considering the variability in the number of links between two adjacent neighbors. This phenomenon is equivalent to having a nonrandom topology with a distribution of interactions and it can be removed by an adequate local normalization of the couplings.
Resumo:
Economy, and consequently trade, is a fundamental part of human social organization which, until now, has not been studied within the network modeling framework. Here we present the first, to the best of our knowledge, empirical characterization of the world trade web, that is, the network built upon the trade relationships between different countries in the world. This network displays the typical properties of complex networks, namely, scale-free degree distribution, the small-world property, a high clustering coefficient, and, in addition, degree-degree correlation between different vertices. All these properties make the world trade web a complex network, which is far from being well described through a classical random network description.