16 resultados para stochastic analysis
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
First: A continuous-time version of Kyle's model (Kyle 1985), known as the Back's model (Back 1992), of asset pricing with asymmetric information, is studied. A larger class of price processes and of noise traders' processes are studied. The price process, as in Kyle's model, is allowed to depend on the path of the market order. The process of the noise traders' is an inhomogeneous Lévy process. Solutions are found by the Hamilton-Jacobi-Bellman equations. With the insider being risk-neutral, the price pressure is constant, and there is no equilibirium in the presence of jumps. If the insider is risk-averse, there is no equilibirium in the presence of either jumps or drifts. Also, it is analised when the release time is unknown. A general relation is established between the problem of finding an equilibrium and of enlargement of filtrations. Random announcement time is random is also considered. In such a case the market is not fully efficient and there exists equilibrium if the sensitivity of prices with respect to the global demand is time decreasing according with the distribution of the random time. Second: Power variations. it is considered, the asymptotic behavior of the power variation of processes of the form _integral_0^t u(s-)dS(s), where S_ is an alpha-stable process with index of stability 0&alpha&2 and the integral is an Itô integral. Stable convergence of corresponding fluctuations is established. These results provide statistical tools to infer the process u from discrete observations. Third: A bond market is studied where short rates r(t) evolve as an integral of g(t-s)sigma(s) with respect to W(ds), where g and sigma are deterministic and W is the stochastic Wiener measure. Processes of this type are particular cases of ambit processes. These processes are in general not of the semimartingale kind.
Resumo:
This paper is devoted to prove a large-deviation principle for solutions to multidimensional stochastic Volterra equations.
Resumo:
A global existence and uniqueness result of the solution for multidimensional, time dependent, stochastic differential equations driven by a fractional Brownian motion with Hurst parameter H> is proved. It is shown, also, that the solution has finite moments. The result is based on a deterministic existence and uniqueness theorem whose proof uses a contraction principle and a priori estimates.
Resumo:
We consider the asymptotic behaviour of the realized power variation of processes of the form ¿t0usdBHs, where BH is a fractional Brownian motion with Hurst parameter H E(0,1), and u is a process with finite q-variation, q<1/(1¿H). We establish the stable convergence of the corresponding fluctuations. These results provide new statistical tools to study and detect the long-memory effect and the Hurst parameter.
Resumo:
We prove a characterization of the support of the law of the solution for a stochastic wave equation with two-dimensional space variable, driven by a noise white in time and correlated in space. The result is a consequence of an approximation theorem, in the convergence of probability, for equations obtained by smoothing the random noise. For some particular classes of coefficients, approximation in the Lp-norm for p¿1 is also proved.
Resumo:
Bardina and Jolis [Stochastic process. Appl. 69 (1997) 83-109] prove an extension of Ito's formula for F(Xt, t), where F(x, t) has a locally square-integrable derivative in x that satisfies a mild continuity condition in t and X is a one-dimensional diffusion process such that the law of Xt has a density satisfying certain properties. This formula was expressed using quadratic covariation. Following the ideas of Eisenbaum [Potential Anal. 13 (2000) 303-328] concerning Brownian motion, we show that one can re-express this formula using integration over space and time with respect to local times in place of quadratic covariation. We also show that when the function F has a locally integrable derivative in t, we can avoid the mild continuity condition in t for the derivative of F in x.
Resumo:
We derive the chaotic expansion of the product of nth- and first-order multiple stochastic integrals with respect to certain normal martingales. This is done by application of the classical and quantum product formulae for multiple stochastic integrals. Our approach extends existing results on chaotic calculus for normal martingales and exhibits properties, relative to multiple stochastic integrals, polynomials and Wick products, that characterize the Wiener and Poisson processes.
Resumo:
The stochastic convergence amongst Mexican Federal entities is analyzed in panel data framework. The joint consideration of cross-section dependence and multiple structural breaks is required to ensure that the statistical inference is based on statistics with good statistical properties. Once these features are accounted for, evidence in favour of stochastic convergence is found. Since stochastic convergence is a necessary, yet insufficient condition for convergence as predicted by economic growth models, the paper also investigates whether-convergence process has taken place. We found that the Mexican states have followed either heterogeneous convergence patterns or divergence process throughout the analyzed period.
Resumo:
In this paper, we obtain sharp asymptotic formulas with error estimates for the Mellin con- volution of functions de ned on (0;1), and use these formulas to characterize the asymptotic behavior of marginal distribution densities of stock price processes in mixed stochastic models. Special examples of mixed models are jump-di usion models and stochastic volatility models with jumps. We apply our general results to the Heston model with double exponential jumps, and make a detailed analysis of the asymptotic behavior of the stock price density, the call option pricing function, and the implied volatility in this model. We also obtain similar results for the Heston model with jumps distributed according to the NIG law.
Resumo:
In the literature on risk, one generally assume that uncertainty is uniformly distributed over the entire working horizon, when the absolute risk-aversion index is negative and constant. From this perspective, the risk is totally exogenous, and thus independent of endogenous risks. The classic procedure is "myopic" with regard to potential changes in the future behavior of the agent due to inherent random fluctuations of the system. The agent's attitude to risk is rigid. Although often criticized, the most widely used hypothesis for the analysis of economic behavior is risk-neutrality. This borderline case must be envisaged with prudence in a dynamic stochastic context. The traditional measures of risk-aversion are generally too weak for making comparisons between risky situations, given the dynamic �complexity of the environment. This can be highlighted in concrete problems in finance and insurance, context for which the Arrow-Pratt measures (in the small) give ambiguous.
Resumo:
The objective of this paper is to re-evaluate the attitude to effort of a risk-averse decision-maker in an evolving environment. In the classic analysis, the space of efforts is generally discretized. More realistic, this new approach emploies a continuum of effort levels. The presence of multiple possible efforts and performance levels provides a better basis for explaining real economic phenomena. The traditional approach (see, Laffont, J. J. & Tirole, J., 1993, Salanie, B., 1997, Laffont, J.J. and Martimort, D, 2002, among others) does not take into account the potential effect of the system dynamics on the agent's behavior to effort over time. In the context of a Principal-agent relationship, not only the incentives of the Principal can determine the private agent to allocate a good effort, but also the evolution of the dynamic system. The incentives can be ineffective when the environment does not incite the agent to invest a good effort. This explains why, some effici
Resumo:
There are two principal chemical concepts that are important for studying the naturalenvironment. The first one is thermodynamics, which describes whether a system is atequilibrium or can spontaneously change by chemical reactions. The second main conceptis how fast chemical reactions (kinetics or rate of chemical change) take place wheneverthey start. In this work we examine a natural system in which both thermodynamics andkinetic factors are important in determining the abundance of NH+4 , NO−2 and NO−3 insuperficial waters. Samples were collected in the Arno Basin (Tuscany, Italy), a system inwhich natural and antrophic effects both contribute to highly modify the chemical compositionof water. Thermodynamical modelling based on the reduction-oxidation reactionsinvolving the passage NH+4 -& NO−2 -& NO−3 in equilibrium conditions has allowed todetermine the Eh redox potential values able to characterise the state of each sample and,consequently, of the fluid environment from which it was drawn. Just as pH expressesthe concentration of H+ in solution, redox potential is used to express the tendency of anenvironment to receive or supply electrons. In this context, oxic environments, as thoseof river systems, are said to have a high redox potential because O2 is available as anelectron acceptor.Principles of thermodynamics and chemical kinetics allow to obtain a model that oftendoes not completely describe the reality of natural systems. Chemical reactions may indeedfail to achieve equilibrium because the products escape from the site of the rectionor because reactions involving the trasformation are very slow, so that non-equilibriumconditions exist for long periods. Moreover, reaction rates can be sensitive to poorly understoodcatalytic effects or to surface effects, while variables as concentration (a largenumber of chemical species can coexist and interact concurrently), temperature and pressurecan have large gradients in natural systems. By taking into account this, data of 91water samples have been modelled by using statistical methodologies for compositionaldata. The application of log–contrast analysis has allowed to obtain statistical parametersto be correlated with the calculated Eh values. In this way, natural conditions in whichchemical equilibrium is hypothesised, as well as underlying fast reactions, are comparedwith those described by a stochastic approach
Resumo:
This paper estimates a translog stochastic frontier production function in the analysis of all 48 contiguous U.S. states in the period 1970-1983, to attempt to measure and explain changes in technical efficiency. The model allows technical inefficiency to vary over time, and inefficiency effects to be a function of a set of explanatory variables in which the level and composition of public capital plays an important role. Results indicated that U.S. state inefficiency levels were significantly and positively correlated with the ratio of public capital to private capital. The proportion of public capital devoted to highways is negatively correlated with technical inefficiency, suggesting that not only the level but also the composition of public capital influenced state efficiency.