11 resultados para stellate ganglion
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Rat superior cervical ganglion (SCG) neurons express low-threshold noninactivating M-type potassium channels (I-K(M)), which can be inhibited by activation of M-1 muscarinic receptors (M-1 mAChR) and bradykinin (BK) B-2 receptors. Inhibition by the M1 mAChR agonist oxotremorine methiodide (Oxo-M) is mediated, at least in part, by the pertussis toxin-insensitive G-protein G alpha (q) (Caulfield et al., 1994; Haley et al., 1998a), whereas BK inhibition involves G alpha (q) and/or G alpha (11) (Jones et al., 1995). G alpha (q) and G alpha (11) can stimulate phospholipase C-beta (PLC-beta), raising the possibility that PLC is involved in I-K(M) inhibition by Oxo-M and BK. RT-PCR and antibody staining confirmed the presence of PLC-beta1, - beta2, - beta3, and - beta4 in rat SCG. We have tested the role of two PLC isoforms (PLC-beta1 and PLC-beta4) using antisense-expression constructs. Antisense constructs, consisting of the cytomegalovirus promoter driving antisense cRNA corresponding to the 3'-untranslated regions of PLC-beta1 and PLC-beta4, were injected into the nucleus of dissociated SCG neurons. Injected cells showed reduced antibody staining for the relevant PLC-beta isoform when compared to uninjected cells 48 hr later. BK inhibition of I-K(M) was significantly reduced 48 hr after injection of the PLC-beta4, but not the PLC-beta1, antisense-encoding plasmid. Neither PLC-beta antisense altered M-1 mAChR inhibition by Oxo-M. These data support the conclusion of Cruzblanca et al. (1998) that BK, but not M-1 mAChR, inhibition of I-K(M) involves PLC and extends this finding by indicating that PLC-beta4 is involved.
Resumo:
Background: The activation of hepatic stellate cells (HSCs) plays a pivotal role during liver injury because the resulting myofibroblasts (MFBs) are mainly responsible for connective tissue re-assembly. MFBs represent therefore cellular targets for anti-fibrotic therapy. In this study, we employed activated HSCs, termed M1-4HSCs, whose transdifferentiation to myofibroblastoid cells (named M-HTs) depends on transforming growth factor (TGF)-β. We analyzed the oxidative stress induced by TGF-β and examined cellular defense mechanisms upon transdifferentiation of HSCs to M-HTs. Results: We found reactive oxygen species (ROS) significantly upregulated in M1-4HSCs within 72 hours of TGF-β administration. In contrast, M-HTs harbored lower intracellular ROS content than M1-4HSCs, despite of elevated NADPH oxidase activity. These observations indicated an upregulation of cellular defense mechanisms in order to protect cells from harmful consequences caused by oxidative stress. In line with this hypothesis, superoxide dismutase activation provided the resistance to augmented radical production in M-HTs, and glutathione rather than catalase was responsible for intracellular hydrogen peroxide removal. Finally, the TGF-β/NADPH oxidase mediated ROS production correlated with the upregulation of AP-1 as well as platelet-derived growth factor receptor subunits, which points to important contributions in establishing antioxidant defense. Conclusion: The data provide evidence that TGF-β induces NADPH oxidase activity which causes radical production upon the transdifferentiation of activated HSCs to M-HTs. Myofibroblastoid cells are equipped with high levels of superoxide dismutase activity as well as glutathione to counterbalance NADPH oxidase dependent oxidative stress and to avoid cellular damage.
Resumo:
The topographical distribution of sciatic and femoral nerve sensory neuronal somata in the L4 dorsal root ganglion of the adult rat was mapped after retrograde tracing with one or two of the dyes Fast Blue, Fluoro-Gold, or Diamidino Yellow. The tracers were applied to the proximal transected end of either nerve alone, or from both nerves in the same animal using separate tracers. Three-dimensional reconstructions of the distribution of labelled neurones were made from serial sections of the L4 dorsal root ganglion which is the only ganglion that these two nerves share. The results showed that with little overlap, femoral nerve neurones distribute dorsally and rostrally whereas sciatic nerve neurones distribute medially and ventrally. This finding indicates the existence of a somatotopical organisation for the representation of different peripheral nerves in dorsal root ganglia of adult animals.
Resumo:
A role for the NADPH oxidases NOX1 and NOX2 in liver fibrosis has been proposed, but the implication of NOX4 is poorly understood yet. The aim of this work was to study the functional role of NOX4 in different cell populations implicated in liver fibrosis: hepatic stellate cells (HSC), myofibroblats (MFBs) and hepatocytes. Two different mice models that develop spontaneous fibrosis (Mdr2−/−/p19ARF−/−, Stat3Δhc/Mdr2−/−) and a model of experimental induced fibrosis (CCl4) were used. In addition, gene expression in biopsies from chronic hepatitis C virus (HCV) patients or non-fibrotic liver samples was analyzed. Results have indicated that NOX4 expression was increased in the livers of all animal models, concomitantly with fibrosis development and TGF-β pathway activation. In vitro TGF-β-treated HSC increased NOX4 expression correlating with transdifferentiation to MFBs. Knockdown experiments revealed that NOX4 downstream TGF-β is necessary for HSC activation as well as for the maintenance of the MFB phenotype. NOX4 was not necessary for TGF-β-induced epithelial-mesenchymal transition (EMT), but was required for TGF-β-induced apoptosis in hepatocytes. Finally, NOX4 expression was elevated in patients with hepatitis C virus (HCV)-derived fibrosis, increasing along the fibrosis degree. In summary, fibrosis progression both in vitro and in vivo (animal models and patients) is accompanied by increased NOX4 expression, which mediates acquisition and maintenance of the MFB phenotype, as well as TGF-β-induced death of hepatocytes.
Resumo:
The inner ear is responsible for the perception of motion and sound in vertebrates. Its functional unit, the sensory patch, contains mechanosensory hair cells innervated by sensory neurons from the statoacoustic ganglion (SAG) that project to the corresponding nuclei in the brainstem. How hair cells develop at specific positions, and how otic neurons are sorted to specifically innervate each endorgan and to convey the extracted information to the hindbrain is not completely understood. In this work, we study the generation of macular sensory patches and investigate the role of Hedgehog (Hh) signaling in the production of their neurosensory elements. Using zebrafish transgenic lines to visualize the dynamics of hair cell and neuron production, we show that the development of the anterior and posterior maculae is asynchronic, suggesting they are independently regulated. Tracing experiments demonstrate the SAG is topologically organized in two different neuronal subpopulations, which are spatially segregated and innervate specifically each macula. Functional experiments identify the Hh pathway as crucial in coordinating the production of hair cells in the posterior macula, and the formation of its specific innervation. Finally, gene expression analyses suggest that Hh influences the balance between different SAG neuronal subpopulations. These results lead to a model in which Hh orients functionally the development of inner ear towards an auditory fate in all vertebrate species.
Resumo:
There has been an increase in the incidence of carcinoma of the tongue, particularly among alcohol and tobacco non-users. However, the number of studies that would allow a better understanding of etiological factors and clinical features, particularly in the Portuguese population, is very limited. This study was based on patients with squamous cell carcinoma of the anterior two thirds of the tongue that were treated at the Department of Head and Neck Surgery of the ¿Instituto Portugues de Oncologia de Lisboa - Francisco Gentil" IPOLFG) in Lisbon, Portugal, between January 1, 2001 and December 31, 2009. The patients were divided in alcohol and tobacco users and non-users in order to evaluate the differences between these 2 groups based on gender, age, tumor location, denture use, and tumor size, metastasis and stage. Of the 354 cases, 208 were users and 146 were non-users. The main location in both groups was the lateral border of the tongue. Denture use showed no significant effect in both study groups. It was possible to conclude that patients who did not drink or smoke were older and presented with smaller tumor size, lower incidence of ganglion metastasis and lower tumor stage compared with alcohol and tobacco users.
Resumo:
Direction-selective retinal ganglion cells show an increased activity evoked by light stimuli moving in the preferred direction. This selectivity is governed by direction-selective inhibition from starburst amacrine cells occurring during stimulus movement in the opposite or null direction. To understand the intrinsic membrane properties of starburst cells responsible for direction-selective GABA release, we performed whole-cell recordings from starburst cells in mouse retina. Voltage-clamp recordings revealed prominent voltage-dependent K+ currents. The currents were mostly blocked by 1 mm TEA, activated rapidly at voltages more positive than -20 mV, and deactivated quickly, properties reminiscent of the currents carried by the Kv3 subfamily of K+ channels. Immunoblots confirmed the presence of Kv3.1 and Kv3.2 proteins in retina and immunohistochemistry revealed their expression in starburst cell somata and dendrites. The Kv3-like current in starburst cells was absent in Kv3.1-Kv3.2 knock-out mice. Current-clamp recordings showed that the fast activation of the Kv3 channels provides a voltage-dependent shunt that limits depolarization of the soma to potentials more positive than -20 mV. This provides a mechanism likely to contribute to the electrical isolation of individual starburst cell dendrites, a property thought essential for direction selectivity. This function of Kv3 channels differs from that in other neurons where they facilitate high-frequency repetitive firing. Moreover, we found a gradient in the intensity of Kv3.1b immunolabeling favoring proximal regions of starburst cells. We hypothesize that this Kv3 channel gradient contributes to the preference for centrifugal signal flow in dendrites underlying direction-selective GABA release from starburst amacrine cells.
Resumo:
This study examines the proportions of regenerative and collateral sprouting to the skin after peripheral nerve injury. Methods: In the first experimental paradigm, primary afferent neurones were pre-labelled with Diamidino Yellow (DY), injected in digit 3, followed by sciatic nerve section and repair. After three months of regeneration, digit 3 was re-injected with Fast Blue (FB) to label regernating cells. Fluoro-Gold (FG) was applied to the femoral (FEM) and musculocutaneous (MC) nervers four days later to quantify their contribution to the innveration. In the second experimental paradigm, sciatic nerve was first sectioned and repaired. Three months later, the sciatic was resected, and digit 3 injected with FB. After four more days, FEM and MC were resected and FG injected in all digits. Results: Neurones in dorsal root ganglion (DRG) L5 had a higher rate of correct reinnervation of digit 3 (44-72%) than neurones in DRG L4 (14-44%). Like in control cases, only occasional axons were traced from the FEM and MC. In the second experiment, only occasional labelled neurones appeared. Conclusions: The results indicate differences in the capacity for correct peripheral sensory reinnvervation between segmental levels and that in this model collateral sprouting was practically non-existent compared to regenerative sprouting.
Resumo:
Capsule application of Diamidino Yellow (DY) to the cut end of the sciatic nerve immediately followed by capsule application of Fast Blue (FB) resulted in approximate to 95% double-labelled dorsal root ganglion neurones (DRGn) and motoneurones (Mn). Nerve injection of DY followed either immediately or 2 months later by capsule application of FB resulted in approximate to 90% double-labelled DRGn and Mn, indicating that DY and FB label similar populations of DRGn and Mn, and that insignificant DY fading occurred during this period. Inversing the order of application, however, i.e. nerve injection of FB followed immediately by capsule application of DY, resulted in double labelling in only approximate to 10% of the DRGn and Mn. These percentages increased to 70% of the DRGn and 60% of the Mn when the FB injection was followed 1 or 2 months after by the DY application, indicating that DY uptake is blocked by recent administration of FB. The results indicate that DY and FB might be useful for sequential labelling before and after nerve injury as a tool to investigate the accuracy of sensory and motor regeneration.
Resumo:
Selective reinnervation of peripheral targets after nerve injury might be assessed by injecting a first tracer in a target before nerve injury to label the original neuronal population, and applying a second tracer after the regeneration period to label the regenerated population. However, altered uptake of tracer, fading, and cell death may interfere with the results. Furthermore, if the first tracer injected remains in the target tissue, available for 're-uptake' by misdirected regenerating axons, which originally innervated another region, then the identification of the original population would be confused. With the aim of studying this problem, the sciatic nerve of adult rats was sectioned and sutured. After 3 days, to allow the distal axon to degenerate avoiding immediate retrograde transport, one of the dyes: Fast Blue (FB), Fluoro-Gold (FG) or Diamidino Yellow (DY), was injected into the tibial branch of the sciatic nerve, or in the skin of one of the denervated digits. Rats survived 2-3 months. The results showed labelled dorsal root ganglion (DRG) cells and motoneurones, indicating that late re-uptake of a first tracer occurs. This phenomenon must be considered when the model of sequential labelling is used for studying the accuracy of peripheral reinnervation.
Resumo:
Increased production of vasoconstrictive prostanoids, such as thromboxane A2 (TXA2 ), contributes to endothelial dysfunction and increased hepatic vascular tone in cirrhosis. TXA2 induces vasoconstriction by way of activation of the thromboxane-A2 /prostaglandin-endoperoxide (TP) receptor. This study investigated whether terutroban, a specific TP receptor blocker, decreases hepatic vascular tone and portal pressure in rats with cirrhosis due to carbon tetrachloride (CCl4 ) or bile duct ligation (BDL). Hepatic and systemic hemodynamics, endothelial dysfunction, liver fibrosis, hepatic Rho-kinase activity (a marker of hepatic stellate cell contraction), and the endothelial nitric oxide synthase (eNOS) signaling pathway were measured in CCl4 and BDL cirrhotic rats treated with terutroban (30 mg/kg/day) or its vehicle for 2 weeks. Terutroban reduced portal pressure in both models without producing significant changes in portal blood flow, suggesting a reduction in hepatic vascular resistance. Terutroban did not significantly change arterial pressure in CCl4 -cirrhotic rats but decreased it significantly in BDL-cirrhotic rats. In livers from CCl4 and BDL-cirrhotic terutroban-treated rats, endothelial dysfunction was improved and Rho-kinase activity was significantly reduced. In CCl4 -cirrhotic rats, terutroban reduced liver fibrosis and decreased alpha smooth muscle actin (α-SMA), collagen-I, and transforming growth factor beta messenger RNA (mRNA) expression without significant changes in the eNOS pathway. In contrast, no change in liver fibrosis was observed in BDL-cirrhotic rats but an increase in the eNOS pathway. CONCLUSION: Our data indicate that TP-receptor blockade with terutroban decreases portal pressure in cirrhosis. This effect is due to decreased hepatic resistance, which in CCl4 -cirrhotic rats was linked to decreased hepatic fibrosis, but not in BDL rats, in which the main mediator appeared to be an enhanced eNOS-dependent vasodilatation, which was not liver-selective, as it was associated with decreased arterial pressure. The potential use of terutroban for portal hypertension requires further investigation.