17 resultados para spontaneous ventilation
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Background: Non-invasive monitoring of respiratory muscle function is an area of increasing research interest, resulting in the appearance of new monitoring devices, one of these being piezoelectric contact sensors. The present study was designed to test whether the use of piezoelectric contact (non-invasive) sensors could be useful in respiratory monitoring, in particular in measuring the timing of diaphragmatic contraction.Methods: Experiments were performed in an animal model: three pentobarbital anesthetized mongrel dogs. The motion of the thoracic cage was acquired by means of a piezoelectric contact sensor placed on the costal wall. This signal is compared with direct measurements of the diaphragmatic muscle length, made by sonomicrometry. Furthermore, to assess the diaphragmatic function other respiratory signals were acquired: respiratory airflow and transdiaphragmatic pressure. Diaphragm contraction time was estimated with these four signals. Using diaphragm length signal as reference, contraction times estimated with the other three signals were compared with the contraction time estimated with diaphragm length signal.Results: The contraction time estimated with the TM signal tends to give a reading 0.06 seconds lower than the measure made with the DL signal (-0.21 and 0.00 for FL and DP signals, respectively), with a standard deviation of 0.05 seconds (0.08 and 0.06 for FL and DP signals, respectively). Correlation coefficients indicated a close link between time contraction estimated with TM signal and contraction time estimated with DL signal (a Pearson correlation coefficient of 0.98, a reliability coefficient of 0.95, a slope of 1.01 and a Spearman's rank-order coefficient of 0.98). In general, correlation coefficients and mean and standard deviation of the difference were better in the inspiratory load respiratory test than in spontaneous ventilation tests.Conclusion: The technique presented in this work provides a non-invasive method to assess the timing of diaphragmatic contraction in canines, using a piezoelectric contact sensor placed on the costal wall.
Resumo:
Els malalts crítics presenten sovint seqüeles cognitives a llarg termini, l’aplicació de ventilació mecànica (VM) pot contribuir al seu desenvolupament. El principal objectiu del nostre estudi fou investigar l’efecte de dos patrons de ventilació (volum corrent elevat/baix) en l’activació neuronal (expressió de c-fos) en determinades àrees cerebrals en un model en rates. Després de 3 hores sota VM, es va trobar activació neuronal; la seva intensitat va ser superior al grup de volum corrent elevat, suggerint un efecte iatrogènic de la VM al cervell. Aquests resultats suggereixen que cal aprofundir en l’estudi del crosstalk cervell-pulmó en malalts crítics sota VM.
Resumo:
The scaling properties of the rough liquid-air interface formed in the spontaneous imbibition of a viscous liquid by a model porous medium are found to be very sensitive to the magnitude of the pressure difference applied at the liquid inlet. Interface fluctuations change from obeying intrinsic anomalous scaling at large negative pressure differences, to being super-rough with the same dynamic exponent z¿3 at less negative pressure differences, to finally obeying ordinary Family-Vicsek scaling with z¿2 at large positive pressure differences. This rich scenario reflects the relative importance on different length scales of capillary and permeability disorder, and the role of surface tension and viscous pressure in damping interface fluctuations.
Resumo:
We show how macroscopic manifestations of P (and T) symmetry breaking can arise in a simple system subject to Aharonov-Bohm interactions. Specifically, we study the conductivity of a gas of charged particles moving through a dilute array of flux tubes. The interaction of the electrons with the flux tubes is taken to be of a purely Aharonov-Bohm type. We find that the system exhibits a nonzero transverse conductivity, i.e., a spontaneous Hall effect. This is in contrast to the fact that the cross sections for both scattering and bremsstrahlung (soft-photon emission) of a single electron from a flux tube are invariant under reflections. We argue that the asymmetry in the conductivity coefficients arises from many-body effects. On the other hand, the transverse conductivity has the same dependence on universal constants that appears in the quantum Hall effect, a result that we relate to the validity of the mean-field approximation.
Resumo:
Bacterial translocation occurs in ascitic cirrhotic rats, but its association with ascites infection is unknown. The aim of this study was to assess the relation between bacterial translocation and ascites infection in cirrhotic rats. Male Sprague-Dawley rats were induced to cirrhosis with intragastric CCl4. Ascitic fluid, portal and peripheral blood, mesenteric lymph nodes, liver and spleen samples were cultured before death in those cirrhotic rats with less (group A) or more (group B) than 250 polymorphonuclear neutrophils/mm3 in ascitic fluid, as well as in healthy control rats. Histological examination of jejunum, ileum, and caecum was also performed. Bacterial translocation occurred in 45% of ascitic rats (without differences between groups A and B), but in 0% controls (p = 0.01). Bacterial translocation was associated with positive ascitic fluid culture in 60% of the cases. In all of them the same bacterial species was isolated in both mesenteric lymph node and ascitic fluid. Submucosal caecal oedema (100%), ileal lymphangiectasia (41%), and caecal inflammatory infiltrate (41%) occurred in ascitic rats, the last being associated with ascitic fluid positive culture (p = 0.04). These results suggests that bacterial translocation occurs frequently in ascitic cirrhotic rats, and may play a permissive, but not unique, part in a number of ascites infections. Whether histological changes seen in cirrhotic ascitic rats favour bacterial translocation remains to be elucidated.
Resumo:
The emergence of chirality in enantioselective autocatalysis for compounds unable to transform according to the Frank-like reaction network is discussed with respect to the controversial limited enantioselectivity (LES) model composed of coupled enantioselective and non-enantioselective autocatalyses. The LES model cannot lead to spontaneous mirror symmetry breaking (SMSB) either in closed systems with a homogeneous temperature distribution or in closed systems with a stationary non-uniform temperature distribution. However, simulations of chemical kinetics in a two-compartment model demonstrate that SMSB may occur if both autocatalytic reactions are spatially separated at different temperatures in different compartments but coupled under the action of a continuous internal flow. In such conditions, the system can evolve, for certain reaction and system parameters, toward a chiral stationary state; that is, the system is able to reach a bifurcation point leading to SMSB. Numerical simulations in which reasonable chemical parameters have been used suggest that an ade- quate scenario for such a SMSB would be that of abyssal hydrothermal vents, by virtue of the typical temper- ature gradients found there and the role of inorganic solids mediating chemical reactions in an enzyme-like role. Key Words: Homochirality Prebiotic chemistry.
Resumo:
Alzheimer's disease is the most prevalent form of progressive degenerative dementia; it has a high socio-economic impact in Western countries. Therefore it is one of the most active research areas today. Alzheimer's is sometimes diagnosed by excluding other dementias, and definitive confirmation is only obtained through a post-mortem study of the brain tissue of the patient. The work presented here is part of a larger study that aims to identify novel technologies and biomarkers for early Alzheimer's disease detection, and it focuses on evaluating the suitability of a new approach for early diagnosis of Alzheimer’s disease by non-invasive methods. The purpose is to examine, in a pilot study, the potential of applying Machine Learning algorithms to speech features obtained from suspected Alzheimer sufferers in order help diagnose this disease and determine its degree of severity. Two human capabilities relevant in communication have been analyzed for feature selection: Spontaneous Speech and Emotional Response. The experimental results obtained were very satisfactory and promising for the early diagnosis and classification of Alzheimer’s disease patients.
Resumo:
Alzheimer’s disease (AD) is the most prevalent form of progressive degenerative dementia and it has a high socio-economic impact in Western countries, therefore is one of the most active research areas today. Its diagnosis is sometimes made by excluding other dementias, and definitive confirmation must be done trough a post-mortem study of the brain tissue of the patient. The purpose of this paper is to contribute to im-provement of early diagnosis of AD and its degree of severity, from an automatic analysis performed by non-invasive intelligent methods. The methods selected in this case are Automatic Spontaneous Speech Analysis (ASSA) and Emotional Temperature (ET), that have the great advantage of being non invasive, low cost and without any side effects.
Resumo:
We have developed numerical simulations of three dimensional suspensions of active particles to characterize the capabilities of the hydrodynamic stresses induced by active swimmers to promote global order and emergent structures in active suspensions. We have considered squirmer suspensions embedded in a fluid modeled under a Lattice Boltzmann scheme. We have found that active stresses play a central role to decorrelate the collective motion of squirmers and that contractile squirmers develop significant aggregates.
Resumo:
We hypothesized that platelet-activating factor (PAF), a potent inflammatory mediator, could induce gas exchange abnormalities in normal humans. To this end, the effect of aerosolized PAF (2 mg/ml solution; 24 micrograms) on ventilation-perfusion (VA/Q) relationships, hemodynamics, and resistance of the respiratory system was studied in 14 healthy, nonatopic, and nonsmoking individuals (23 +/- 1 [SEM]yr) before and at 2, 4, 6, 8, 15, and 45 min after inhalation, and compared to that of inhaled lyso-PAF in 10 other healthy individuals (24 +/- 2 yr). PAF induced, compared to lyso-PAF, immediate leukopenia (P < 0.001) followed by a rebound leukocytosis (P < 0.002), increased minute ventilation (P < 0.05) and resistance of the respiratory system (P < 0.01), and decreased systemic arterial pressure (P < 0.05). Similarly, compared to lyso-PAF, PaO2 showed a trend to fall (by 12.2 +/- 4.3 mmHg, mean +/- SEM maximum change from baseline), and arterial-alveolar O2 gradient increased (by 16.7 +/- 4.3 mmHg) (P < 0.02) after PAF, because of VA/Q mismatch: the dispersion of pulmonary blood flow and that of ventilation increased by 0.45 +/- 0.1 (P < 0.01) and 0.29 +/- 0.1 (P < 0.04), respectively. We conclude that in normal subjects, inhaled PAF results in considerable immediate VA/Q inequality and gas exchange impairment. These results reinforce the notion that PAF may play a major role as a mediator of inflammation in the human lung.
Resumo:
We hypothesized that platelet-activating factor (PAF), a potent inflammatory mediator, could induce gas exchange abnormalities in normal humans. To this end, the effect of aerosolized PAF (2 mg/ml solution; 24 micrograms) on ventilation-perfusion (VA/Q) relationships, hemodynamics, and resistance of the respiratory system was studied in 14 healthy, nonatopic, and nonsmoking individuals (23 +/- 1 [SEM]yr) before and at 2, 4, 6, 8, 15, and 45 min after inhalation, and compared to that of inhaled lyso-PAF in 10 other healthy individuals (24 +/- 2 yr). PAF induced, compared to lyso-PAF, immediate leukopenia (P < 0.001) followed by a rebound leukocytosis (P < 0.002), increased minute ventilation (P < 0.05) and resistance of the respiratory system (P < 0.01), and decreased systemic arterial pressure (P < 0.05). Similarly, compared to lyso-PAF, PaO2 showed a trend to fall (by 12.2 +/- 4.3 mmHg, mean +/- SEM maximum change from baseline), and arterial-alveolar O2 gradient increased (by 16.7 +/- 4.3 mmHg) (P < 0.02) after PAF, because of VA/Q mismatch: the dispersion of pulmonary blood flow and that of ventilation increased by 0.45 +/- 0.1 (P < 0.01) and 0.29 +/- 0.1 (P < 0.04), respectively. We conclude that in normal subjects, inhaled PAF results in considerable immediate VA/Q inequality and gas exchange impairment. These results reinforce the notion that PAF may play a major role as a mediator of inflammation in the human lung.
Resumo:
The emergence of chirality in enantioselective autocatalysis for compounds unable to transform according to the Frank-like reaction network is discussed with respect to the controversial limited enantioselectivity (LES) model composed of coupled enantioselective and non-enantioselective autocatalyses. The LES model cannot lead to spontaneous mirror symmetry breaking (SMSB) either in closed systems with a homogeneous temperature distribution or in closed systems with a stationary non-uniform temperature distribution. However, simulations of chemical kinetics in a two-compartment model demonstrate that SMSB may occur if both autocatalytic reactions are spatially separated at different temperatures in different compartments but coupled under the action of a continuous internal flow. In such conditions, the system can evolve, for certain reaction and system parameters, toward a chiral stationary state; that is, the system is able to reach a bifurcation point leading to SMSB. Numerical simulations in which reasonable chemical parameters have been used suggest that an adequate scenario for such a SMSB would be that of abyssal hydrothermal vents, by virtue of the typical temperature gradients found there and the role of inorganic solids mediating chemical reactions in an enzyme-like role.
Resumo:
Alzheimer’s disease (AD) is the most prevalent form of progressive degenerative dementia and it has a high socio-economic impact in Western countries, therefore is one of the most active research areas today. Its diagnosis is sometimes made by excluding other dementias, and definitive confirmation must be done trough a post-mortem study of the brain tissue of the patient. The purpose of this paper is to contribute to improvement of early diagnosis of AD and its degree of severity, from an automatic analysis performed by non-invasive intelligent methods. The methods selected in this case are Automatic Spontaneous Speech Analysis (ASSA) and Emotional Temperature (ET), that have the great advantage of being non invasive, low cost and without any side effects.