13 resultados para speech analysis

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work presented here is part of a larger study to identify novel technologies and biomarkers for early Alzheimer disease (AD) detection and it focuses on evaluating the suitability of a new approach for early AD diagnosis by non-invasive methods. The purpose is to examine in a pilot study the potential of applying intelligent algorithms to speech features obtained from suspected patients in order to contribute to the improvement of diagnosis of AD and its degree of severity. In this sense, Artificial Neural Networks (ANN) have been used for the automatic classification of the two classes (AD and control subjects). Two human issues have been analyzed for feature selection: Spontaneous Speech and Emotional Response. Not only linear features but also non-linear ones, such as Fractal Dimension, have been explored. The approach is non invasive, low cost and without any side effects. Obtained experimental results were very satisfactory and promising for early diagnosis and classification of AD patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alzheimer's disease is the most prevalent form of progressive degenerative dementia; it has a high socio-economic impact in Western countries. Therefore it is one of the most active research areas today. Alzheimer's is sometimes diagnosed by excluding other dementias, and definitive confirmation is only obtained through a post-mortem study of the brain tissue of the patient. The work presented here is part of a larger study that aims to identify novel technologies and biomarkers for early Alzheimer's disease detection, and it focuses on evaluating the suitability of a new approach for early diagnosis of Alzheimer’s disease by non-invasive methods. The purpose is to examine, in a pilot study, the potential of applying Machine Learning algorithms to speech features obtained from suspected Alzheimer sufferers in order help diagnose this disease and determine its degree of severity. Two human capabilities relevant in communication have been analyzed for feature selection: Spontaneous Speech and Emotional Response. The experimental results obtained were very satisfactory and promising for the early diagnosis and classification of Alzheimer’s disease patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alzheimer’s disease (AD) is the most prevalent form of progressive degenerative dementia and it has a high socio-economic impact in Western countries, therefore is one of the most active research areas today. Its diagnosis is sometimes made by excluding other dementias, and definitive confirmation must be done trough a post-mortem study of the brain tissue of the patient. The purpose of this paper is to contribute to im-provement of early diagnosis of AD and its degree of severity, from an automatic analysis performed by non-invasive intelligent methods. The methods selected in this case are Automatic Spontaneous Speech Analysis (ASSA) and Emotional Temperature (ET), that have the great advantage of being non invasive, low cost and without any side effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alzheimer’s disease (AD) is the most prevalent form of progressive degenerative dementia and it has a high socio-economic impact in Western countries, therefore is one of the most active research areas today. Its diagnosis is sometimes made by excluding other dementias, and definitive confirmation must be done trough a post-mortem study of the brain tissue of the patient. The purpose of this paper is to contribute to improvement of early diagnosis of AD and its degree of severity, from an automatic analysis performed by non-invasive intelligent methods. The methods selected in this case are Automatic Spontaneous Speech Analysis (ASSA) and Emotional Temperature (ET), that have the great advantage of being non invasive, low cost and without any side effects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A crucial step for understanding how lexical knowledge is represented is to describe the relative similarity of lexical items, and how it influences language processing. Previous studies of the effects of form similarity on word production have reported conflicting results, notably within and across languages. The aim of the present study was to clarify this empirical issue to provide specific constraints for theoretical models of language production. We investigated the role of phonological neighborhood density in a large-scale picture naming experiment using fine-grained statistical models. The results showed that increasing phonological neighborhood density has a detrimental effect on naming latencies, and re-analyses of independently obtained data sets provide supplementary evidence for this effect. Finally, we reviewed a large body of evidence concerning phonological neighborhood density effects in word production, and discussed the occurrence of facilitatory and inhibitory effects in accuracy measures. The overall pattern shows that phonological neighborhood generates two opposite forces, one facilitatory and one inhibitory. In cases where speech production is disrupted (e.g. certain aphasic symptoms), the facilitatory component may emerge, but inhibitory processes dominate in efficient naming by healthy speakers. These findings are difficult to accommodate in terms of monitoring processes, but can be explained within interactive activation accounts combining phonological facilitation and lexical competition.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Alzheimer׳s disease (AD) is the most common type of dementia among the elderly. This work is part of a larger study that aims to identify novel technologies and biomarkers or features for the early detection of AD and its degree of severity. The diagnosis is made by analyzing several biomarkers and conducting a variety of tests (although only a post-mortem examination of the patients’ brain tissue is considered to provide definitive confirmation). Non-invasive intelligent diagnosis techniques would be a very valuable diagnostic aid. This paper concerns the Automatic Analysis of Emotional Response (AAER) in spontaneous speech based on classical and new emotional speech features: Emotional Temperature (ET) and fractal dimension (FD). This is a pre-clinical study aiming to validate tests and biomarkers for future diagnostic use. The method has the great advantage of being non-invasive, low cost, and without any side effects. The AAER shows very promising results for the definition of features useful in the early diagnosis of AD.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we present the Melodic Analysis of Speech method (MAS) that enables us to carry out complete and objective descriptions of a language's intonation, from a phonetic (melodic) point of view as well as from a phonological point of view. It is based on the acoustic-perceptive method by Cantero (2002), which has already been used in research on prosody in different languages. In this case, we present the results of its application in Spanish and Catalan.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although both are fundamental terms in the humanities and social sciences, discourse and knowledge have seldom been explicitly related, and even less so in critical discourse studies. After a brief summary of what we know about these relationships in linguistics, psychology, epistemology and the social sciences, with special emphasis on the role of knowledge in the formation of mental models as a basis for discourse, I examine in more detail how a critical study of discourse and knowledge may be articulated in critical discourse studies. Thus, several areas of critical epistemic discourse analysis are identified, and then applied in a study of Tony Blair’s Iraq speech on March 18, 2003, in which he sought to legitimatize his decision to go to war in Iraq with George Bush. The analysis shows the various modes of how knowledge is managed and manipulated of all levels of discourse of this speech.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This case study presents corpus data gathered from a Spanish-English bilingual child with expressive language delay. Longitudinal data on the child’s linguistic development was collected from the onset of productive speech at age 1;1 until age 4 over the course of 28 video-taped sessions with the child’s principal caregivers. A literature review focused on the relationship between language delay and persisting disorders—including a discussion of the frequent difficulty in distinguishing between the two at early stages of bilingual development—is followed by an analysis of the child’s productive development in 2 distinct phases. An attempt is made to assess the child’s speech at age 4 for preliminary signs of SLI and to consider techniques for identifying ‘at risk’ bilingual children (that is, those with productive language delay, poor oral fluency, and family history of language problems) based on samples of recorded and transcribed speech.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper analyzes applications of cumulant analysis in speech processing. A special focus is made on different second-order statistics. A dominant role is played by an integral representation for cumulants by means of integrals involving cyclic products of kernels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of our project is to contribute to earlier diagnosis of AD and better estimates of its severity by using automatic analysis performed through new biomarkers extracted from non-invasive intelligent methods. The methods selected in this case are speech biomarkers oriented to Sponta-neous Speech and Emotional Response Analysis. Thus the main goal of the present work is feature search in Spontaneous Speech oriented to pre-clinical evaluation for the definition of test for AD diagnosis by One-class classifier. One-class classifi-cation problem differs from multi-class classifier in one essen-tial aspect. In one-class classification it is assumed that only information of one of the classes, the target class, is available. In this work we explore the problem of imbalanced datasets that is particularly crucial in applications where the goal is to maximize recognition of the minority class as in medical diag-nosis. The use of information about outlier and Fractal Dimen-sion features improves the system performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

tThis paper deals with the potential and limitations of using voice and speech processing to detect Obstruc-tive Sleep Apnea (OSA). An extensive body of voice features has been extracted from patients whopresent various degrees of OSA as well as healthy controls. We analyse the utility of a reduced set offeatures for detecting OSA. We apply various feature selection and reduction schemes (statistical rank-ing, Genetic Algorithms, PCA, LDA) and compare various classifiers (Bayesian Classifiers, kNN, SupportVector Machines, neural networks, Adaboost). S-fold crossvalidation performed on 248 subjects showsthat in the extreme cases (that is, 127 controls and 121 patients with severe OSA) voice alone is able todiscriminate quite well between the presence and absence of OSA. However, this is not the case withmild OSA and healthy snoring patients where voice seems to play a secondary role. We found that thebest classification schemes are achieved using a Genetic Algorithm for feature selection/reduction.