41 resultados para spatiotemporal variation
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
To understand how tree growth has responded to recent climate warming, an understanding of the tree-climate-site complex is necessary. To achieve this, radial growth variability among 204 trees established before 1850 was studied in relation to both climatic and site factors. Seventeen forest stands were sampled in the Spanish Central Pyrenees. Three species were studied: Pinus uncinata, Abies alba, and Pinus sylvestris. For each tree, a ring-width residual chronology was built. All trees cross-dated well, indicating a common influence of the regional climate. For the 1952-1993 period, the radial growth of all species, especially P. uncinata, was positively correlated with warm Novembers during the year before ring formation and warm Mays of the year the annual ring formed. Differences in species-stand elevation modulated the growth-climate associations. Radial growth in P. uncinata at high elevation sites was reduced when May temperatures were colder and May precipitation more abundant. In the 20th century, two contrasting periods in radial growth were observed: one (1900-1949) with low frequency of narrow and wide rings, low mean annual sensitivity, and low common growth variation; and another (1950-1994) with the reverse characteristics. The increased variability in radial growth since the 1950s was observed for all species and sites, which suggests a climatic cause. The low shared variance among tree chronologies during the first half of the 20th century may result from a"relaxation" of the elevation gradient, allowing local site conditions to dominate macroclimatic influence. These temporal trends may be related to the recently reported increase of climatic variability and warmer conditions. This study emphasizes the need to carefully assess the relationships between radial growth and site conditions along ecological gradients to improve dendroclimatic reconstructions.
Resumo:
Markowitz portfolio theory (1952) has induced research into the efficiency of portfolio management. This paper studies existing nonparametric efficiency measurement approaches for single period portfolio selection from a theoretical perspective and generalises currently used efficiency measures into the full mean-variance space. Therefore, we introduce the efficiency improvement possibility function (a variation on the shortage function), study its axiomatic properties in the context of Markowitz efficient frontier, and establish a link to the indirect mean-variance utility function. This framework allows distinguishing between portfolio efficiency and allocative efficiency. Furthermore, it permits retrieving information about the revealed risk aversion of investors. The efficiency improvement possibility function thus provides a more general framework for gauging the efficiency of portfolio management using nonparametric frontier envelopment methods based on quadratic optimisation.
Resumo:
In this article we investigate the reforms of human resource management in the European Commission and the OECD by analyzing comparatively to what extent both organizations have adjusted their respective structures towards the ideal type of the so-called New Public Management (NPM). The empirical findings show that reforms towards NPM are more pronounced in the Commission than in the OECD. These findings are surprising for two reasons: First, it seems rather paradoxical that the OECD as central promoter of NPM at the international level lags behind the global trend when it comes to reforming its own structures. Second, this result is in contradiction with theoretical expectations, as they can be derived from theories of institutional isomorphism. To nevertheless account for the surprising results, it is necessary to modify and complement existing theories especially with regard to the scope conditions of their causal mechanisms.
Resumo:
Quality of newly hatched larvae (NHL) of Maja brachydactyla in captivity has been characterized throughout the year to evaluate their availability for mass production. Spawning took place every month and NHL were collected and analyzed to estimate individual dry weight (DW) and proximate biochemical composition (protein, carbohydrate and lipids). Lipid class, fatty acid composition, amino acid profile, mineral and vitamins A, E and C contents were analyzed seasonally. NHL obtained throughout the year are a potential source for aquaculture purposes, since the increment in the relative protein and lipid (especially phospholipids and n-3 PUFA) content might compensate the decrease in DW of larvae hatched from broodstock kept during one year in captivity. However, the decrease in vitamins A and E as well as in certain essential amino acids (Lys, Val, and His) and trace elements (Cu and Fe) of NHL at the end of the year might be indicative of a nutritional deficiency in broodstock diets.
Resumo:
In this work we describe the usage of bilinear statistical models as a means of factoring the shape variability into two components attributed to inter-subject variation and to the intrinsic dynamics of the human heart. We show that it is feasible to reconstruct the shape of the heart at discrete points in the cardiac cycle. Provided we are given a small number of shape instances representing the same heart atdifferent points in the same cycle, we can use the bilinearmodel to establish this. Using a temporal and a spatial alignment step in the preprocessing of the shapes, around half of the reconstruction errors were on the order of the axial image resolution of 2 mm, and over 90% was within 3.5 mm. From this, weconclude that the dynamics were indeed separated from theinter-subject variability in our dataset.
Resumo:
In the presentstudy, the priority of taxonomic characters of cephalic region of Terschellingialongispiculata over those of the tail and reproductive system is discussed.Four morphological varieties of the species are established based on variationsof the tail and reproductive system. The problem of considering only changes inthe posterior region for determination of some species is posed. From this,studies on important populations must be done for the establishment of newspecies based on one of these characters, but taken together with characters inother regions such as the cephalic.
Resumo:
The natural toxicity of cnidarians, bryozoans and tunicates in two caves was assessed using the Microtox® technique in spring and autumn. One cave was located in the Cabrera Archipelago (Balearic Islands) and the other in the Medes Islands (Catalan littoral). The organisms analysed were good representatives of the coverage of each Phylum in the communities; however, these Phyla are less abundant than sponges which are the dominant group in these caves. Seventy-one percent of the species of cnidarians and bryozoans analysed were toxic in one of the caves, communities or seasons, which indicates the relevance of bioactive species in these groups. The tunicate Lissoclinum perforatum was the most toxic species. Although all three Phyla had some highly toxic species, a common pattern that related the caves, communities and seasons was not found. Seasonal variation of toxicity in cnidarians and bryozoans was higher in the Cabrera than in the Medes cave. Moreover, variation in toxicity either between communities or between seasons was a common trait for most cnidarians and bryozoans, whereas tunicates remained toxic throughout communities and seasons.
Resumo:
Spiral chemical waves subjected to a spatiotemporal random excitability are experimentally and numerically investigated in relation to the light-sensitive Belousov-Zhabotinsky reaction. Brownian motion is identified and characterized by an effective diffusion coefficient which shows a rather complex dependence on the time and length scales of the noise relative to those of the spiral. A kinematically based model is proposed whose results are in good qualitative agreement with experiments and numerics.
Resumo:
We study, both theoretically and experimentally, the dynamical response of Turing patterns to a spatiotemporal forcing in the form of a traveling-wave modulation of a control parameter. We show that from strictly spatial resonance, it is possible to induce new, generic dynamical behaviors, including temporally modulated traveling waves and localized traveling solitonlike solutions. The latter make contact with the soliton solutions of Coullet [Phys. Rev. Lett. 56, 724 (1986)] and generalize them. The stability diagram for the different propagating modes in the Lengyel-Epstein model is determined numerically. Direct observations of the predicted solutions in experiments carried out with light modulations in the photosensitive chlorine dioxide-iodine-malonic acid reaction are also reported.
Resumo:
Experimental observations of self-organized behavior arising out of noise are also described, and details on the numerical algorithms needed in the computer simulation of these problems are given.
Resumo:
We propose a novel mechanism leading to spatiotemporal oscillations in extended systems that does not rely on local bulk instabilities. Instead, oscillations arise from the interaction of two subsystems of different spatial dimensionality. Specifically, we show that coupling a passive diffusive bulk of dimension d with an excitable membrane of dimension d-1 produces a self-sustained oscillatory behavior. An analytical explanation of the phenomenon is provided for d=1. Moreover, in-phase and antiphase synchronization of oscillations are found numerically in one and two dimensions. This novel dynamic instability could be used by biological systems such as cells, where the dynamics on the cellular membrane is necessarily different from that of the cytoplasmic bulk.
Resumo:
We present an analytic and numerical study of the effects of external fluctuations in active media. Our analytical methodology transforms the initial stochastic partial differential equations into an effective set of deterministic reaction-diffusion equations. As a result we are able to explain and make quantitative predictions on the systematic and constructive effects of the noise, for example, target patterns created out of noise and traveling or spiral waves sustained by noise. Our study includes the case of realistic noises with temporal and spatial structures.
Resumo:
We develop an algorithm to simulate a Gaussian stochastic process that is non-¿-correlated in both space and time coordinates. The colored noise obeys a linear reaction-diffusion Langevin equation with Gaussian white noise. This equation is exactly simulated in a discrete Fourier space.