6 resultados para soil carbon pool
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The abandonment of agricultural land in mountainous areas has been an outstanding problem along the last century and has captured the attention of scientists, technicians and administrations, for the dramatic consequences sometimes occurred due to soil instability, steep slopes, rainfall regimes and wildfires. Hidromorfological and pedological alterations causing exceptional floods and accelerated erosion processes has therefore been studied, identifying the cause in the loss of landscape heterogeneity. Through the disappearance of agricultural works and drainage maintenance, slope stability has resulted severely affected. The mechanization of agriculture has caused the displacement of vines, olives and corks trees cultivation in terraced areas along the Mediterranean catchment towards more economically suitable areas. On the one hand, land use and management changes have implicated sociological changes as well, transforming areas inhabited by agricultural communities into deserted areas where the colonization of disorganized spontaneous vegetation has buried a valuable rural patrimony. On the other hand, lacking of planning and management of the abandoned areas has produced badlands and infertile soils due to wildfire and high erosion rates strongly degrading the whole ecosystems. In other cases, after land abandonment a process of soil regeneration has been recorded. Investigations have been conducted in a part of NE Spain where extended areas of terraced soils previously cultivated have been abandoned in the last century. The selected environments were semi-abandoned vineyards, semi-abandoned olive groves, abandoned stands of cork trees, abandoned stands of pine trees, scrubland of Cistaceaea, scrubland of Ericaceaea, and pasture. The research work was focused on the study of most relevant physical, chemical and biological soil properties, as well as runoff and erosion under soils with different plant cover to establish the abandonment effect on soil quality, due to the peculiarity and vulnerability of these soils with a much reduced depth. The period of observation was carried out from autumn 2009 to autumn 2010. The sediment concentration of soil erosion under vines was recorded as 34.52 g/l while under pasture it was 4.66 g/l. In addition, the soil under vines showed the least amount of organic matter, which was 12 times lower than all other soil environments. The carbon dioxide (CO2) and total glomalin (TG) ratio to soil organic carbon (SOC) in this soil was 0.11 and 0.31 respectively. However, the soil under pasture contained a higher amount of organic matter and showed that the CO2 and TG ratio to SOC was 0.02 and 0.11 respectively indicating that the soil under pasture better preserves the soil carbon pool. A similar trend was found in the intermediate soils in the sequence of land use change and abandonment. Soil structural stability increased in the two soil fractions investigated (0.25-2.00 mm, 2.0-5.6 mm) especially in those soils that did not undergo periodical perturbations like wildfires. Soil quality indexes were obtained by using relevant physical and chemical soil parameters. Factor analysis carried out to study the relationship between all soil parameters allowed to related variables and environments and identify those areas that better contribute to soil quality towards others that may need more attention to avoid further degradation processes
Resumo:
S’ha estudiat el grau de protecció física del carboni dins d’agregats de diferents mides en un sòl d’una pedrera restaurada fa 17 anys amb terres adobades amb fangs de depuradora, i s’ha interpretat el seu paper en el context del segrest de carboni en el sòl. La metodologia aplicada es basa en la d’humitejament ràpid dels agregats del sòl per immersió en aigua (Le Bissonnais, 1996), que simula l’estabilitat d'un sòl sec que es veu sotmès a processos tals com la inundació local o saturació ràpida. També s’ha determinat la quantitat de carboni oxidable present en els agregats del sòl amb el mètode de Nelson i Sommers (1982). Els resultats han mostrat que l’adobat amb fangs de depuradora contribueix a augmentar el contingut de carboni orgànic en els agregats del sòl i n’estimula el segrest a mitjà termini (unes 10 tones ha-1 en 17 anys), aportant estabilitat al sòl i protegint físicament el carboni orgànic dins dels agregats de mida major (5-2 mm). A més s’ha constatat que per determinar l’estabilitat del carboni segrestat en el sòl cal conèixer com es distribueix entre les diferents mides d’agregats. Finalment, l’augment del segrest de carboni en el sòl propiciat per l’aplicació dels fangs de depuradora li dóna més capacitat per fixar CO2 atmosfèric.
Resumo:
Purpose: Despite the fundamental role of ecosystem goods and services in sustaining human activities, there is no harmonized and internationally agreed method for including them in life cycle assessment (LCA). The main goal of this study was to develop a globally applicable and spatially resolved method for assessing land-use impacts on the erosion regulation ecosystem service.Methods: Soil erosion depends much on location. Thus, unlike conventional LCA, the endpoint method was regionalized at the grid-cell level (5 arc-minutes, approximately 10×10 km2) to reflect the spatial conditions of the site. Spatially explicit characterization factors were not further aggregated at broader spatial scales. Results and discussion: Life cycle inventory data of topsoil and topsoil organic carbon (SOC) losses were interpreted at the endpoint level in terms of the ultimate damage to soil resources and ecosystem quality. Human health damages were excluded from the assessment. The method was tested on a case study of five three-year agricultural rotations, two of them with energy crops, grown in several locations in Spain. A large variation in soil and SOC losses was recorded in the inventory step, depending on climatic and edaphic conditions. The importance of using a spatially explicit model and characterization factors is shown in the case study.Conclusions and outlook: The regionalized assessment takes into account the differences in soil erosion-related environmental impacts caused by the great variability of soils. Taking this regionalized framework as the starting point, further research should focus on testing the applicability of the method trough the complete life cycle of a product and on determining an appropriate spatial scale at which to aggregate characterization factors, in order to deal with data gaps on location of processes, especially in the background system. Additional research should also focus on improving reliability of the method by quantifying and, insofar as it is possible, reducing uncertainty.
Resumo:
Outcrops of old strata at the shelf edge resulting from erosive gravity-driven flows have been globally described on continental margins. The reexposure of old strata allows for the reintroduction of aged organic carbon (OC), sequestered in marine sediments for thousands of years, into the modern carbon cycle. This pool of reworked material represents an additional source of C-14-depleted organic carbon supplied to the ocean, in parallel with the weathering of fossil organic carbon delivered by rivers from land. To understand the dynamics and implications of this reexposure at the shelf edge, a biogeochemical study was carried out in the Gulf of Lions (Mediterranean Sea) where erosive processes, driven by shelf dense water cascading, are currently shaping the seafloor at the canyon heads. Mooring lines equipped with sediment traps and current meters were deployed during the cascading season in the southwestern canyon heads, whereas sediment cores were collected along the sediment dispersal system from the prodelta regions down to the canyon heads. Evidence from grain-size, X-radiographs and Pb-210 activity indicate the presence in the upper slope of a shelly-coarse surface stratum overlying a consolidated deposit. This erosive discontinuity was interpreted as being a result of dense water cascading that is able to generate sufficient shear stress at the canyon heads to mobilize the coarse surface layer, eroding the basal strata. As a result, a pool of aged organic carbon (Delta C-14 = -944.5 +/- 24.7%; mean age 23,650 +/- 3,321 ybp) outcrops at the modern seafloor and is reexposed to the contemporary carbon cycle. This basal deposit was found to have relatively high terrigenous organic carbon (lignin = 1.48 +/- 0.14 mg/100 mg OC), suggesting that this material was deposited during the last low sea-level stand. A few sediment trap samples showed anomalously depleted radiocarbon concentrations (Delta C-14 = -704.4 +/- 62.5%) relative to inner shelf (Delta C-14 = -293.4 +/- 134.0%), mid-shelf (Delta C-14 = -366.6 +/- 51.1%), and outer shelf (Delta C-14 = -384 +/- 47.8%) surface sediments. Therefore, although the major source of particulate material during the cascading season is resuspended shelf deposits, there is evidence that this aged pool of organic carbon can be eroded and laterally advected downslope.
Resumo:
Soil respiration (SR) is a major component of ecosystems' carbon cycles and represents the second largest CO2 flux in the terrestrial biosphere. Soil temperature is considered to be the primary abiotic control on SR, whereas soil moisture is the secondary control factor. However, soil moisture can become the dominant control on SR in very wet or dry conditions. Determining the trigger that makes soil moisture as the primary control factor of SR will provide a deeper understanding on how SR changes under the projected future increase in droughts. Specific objectives of this study were (1) to investigate the seasonal variations and the relationship between SR and both soil temperature and moisture in a Mediterranean riparian forest along a groundwater level gradient; (2) to determine soil moisture thresholds at which SR is controlled by soil moisture rather than by temperature; (3) to compare SR responses under different tree species present in a Mediterranean riparian forest (Alnus glutinosa, Populus nigra and Fraxinus excelsior). Results showed that the heterotrophic soil respiration rate, groundwater level and 30 cm integral soil moisture (SM30) decreased significantly from the riverside moving uphill and showed a pronounced seasonality. SR rates showed significant differences between tree species, with higher SR for P. nigra and lower SR for A. glutinosa. The lower threshold of soil moisture was 20 and 17% for heterotrophic and total SR, respectively. Daily mean SR rate was positively correlated with soil temperature when soil moisture exceeded the threshold, with Q10 values ranging from 1.19 to 2.14; nevertheless, SR became decoupled from soil temperature when soil moisture dropped below these thresholds.
Resumo:
Background and aims Rhizodeposition plays an important role in mediating soil nutrient availability in ecosystems. However, owing to methodological difficulties (i.e., narrow zone of soil around roots, rapid assimilation by soil microbes) fertility-induced changes in rhizodeposition remain mostly unknown. Methods We developed a novel long-term continuous 13C labelling method to address the effects of two levels of nitrogen (N) fertilization on rhizodeposited carbon (C) by species with different nutrient acquisition strategies. Results Fertility-induced changes in rhizodeposition were modulated by root responses to N availability rather than by changes in soil microbial biomass. Differences among species were mostly related to plant biomass: species with higher total leaf and root biomass also had higher total rhizodeposited C, whereas species with lower root biomass had higher specific rhizodeposited C (per gram root mass). Experimental controls demonstrated that most of the biases commonly associated with this type of experiment (i.e., long-term steady-state labelling) were avoided using our methodological approach. Conclusions These results suggest that the amount of rhizodeposited C from plants grown under different levels of N were driven mainly by plant biomass and root morphology rather than microbial biomass. They also underline the importance of plant characteristics (i.e., biomass allocation) as opposed to traits associated with plant resource acquisition strategies in predicting total C rhizodeposition.