66 resultados para signal processing algorithms
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
When dealing with nonlinear blind processing algorithms (deconvolution or post-nonlinear source separation), complex mathematical estimations must be done giving as a result very slow algorithms. This is the case, for example, in speech processing, spike signals deconvolution or microarray data analysis. In this paper, we propose a simple method to reduce computational time for the inversion of Wiener systems or the separation of post-nonlinear mixtures, by using a linear approximation in a minimum mutual information algorithm. Simulation results demonstrate that linear spline interpolation is fast and accurate, obtaining very good results (similar to those obtained without approximation) while computational time is dramatically decreased. On the other hand, cubic spline interpolation also obtains similar good results, but due to its intrinsic complexity, the global algorithm is much more slow and hence not useful for our purpose.
Resumo:
A general criterion for the design of adaptive systemsin digital communications called the statistical reference criterionis proposed. The criterion is based on imposition of the probabilitydensity function of the signal of interest at the outputof the adaptive system, with its application to the scenario ofhighly powerful interferers being the main focus of this paper.The knowledge of the pdf of the wanted signal is used as adiscriminator between signals so that interferers with differingdistributions are rejected by the algorithm. Its performance isstudied over a range of scenarios. Equations for gradient-basedcoefficient updates are derived, and the relationship with otherexisting algorithms like the minimum variance and the Wienercriterion are examined.
Resumo:
We describe one of the research lines of the Grup de Teoria de Funcions de la UAB UB, which deals with sampling and interpolation problems in signal analysis and their connections with complex function theory.
Resumo:
In this paper, we describe several techniques for detecting tonic pitch value in Indian classical music. In Indian music, the raga is the basic melodic framework and it is built on the tonic. Tonic detection is therefore fundamental for any melodic analysis in Indian classical music. This workexplores detection of tonic by processing the pitch histograms of Indian classic music. Processing of pitch histograms using group delay functions and its ability to amplify certain traits of Indian music in the pitch histogram, is discussed. Three different strategies to detect tonic, namely, the concert method, the template matching and segmented histogram method are proposed. The concert method exploits the fact that the tonic is constant over a piece/concert.templatematchingmethod and segmented histogrammethodsuse the properties: (i) the tonic is always present in the background, (ii) some notes are less inflected and dominant, to detect the tonic of individual pieces. All the three methods yield good results for Carnatic music (90−100% accuracy), while for Hindustanimusic, the templatemethod works best, provided the v¯adi samv¯adi notes for a given piece are known (85%).
Resumo:
Neural signal processing is a discipline within neuroengineering. This interdisciplinary approach combines principles from machine learning, signal processing theory, and computational neuroscience applied to problems in basic and clinical neuroscience. The ultimate goal of neuroengineering is a technological revolution, where machines would interact in real time with the brain. Machines and brains could interface, enabling normal function in cases of injury or disease, brain monitoring, and/or medical rehabilitation of brain disorders. Much current research in neuroengineering is focused on understanding the coding and processing of information in the sensory and motor systems, quantifying how this processing is altered in the pathological state, and how it can be manipulated through interactions with artificial devices including brain–computer interfaces and neuroprosthetics.
Resumo:
[ANGLÈS] This project introduces GNSS-SDR, an open source Global Navigation Satellite System software-defined receiver. The lack of reconfigurability of current commercial-of-the-shelf receivers and the advent of new radionavigation signals and systems make software receivers an appealing approach to design new architectures and signal processing algorithms. With the aim of exploring the full potential of this forthcoming scenario with a plurality of new signal structures and frequency bands available for positioning, this paper describes the software architecture design and provides details about its implementation, targeting a multiband, multisystem GNSS receiver. The result is a testbed for GNSS signal processing that allows any kind of customization, including interchangeability of signal sources, signal processing algorithms, interoperability with other systems, output formats, and the offering of interfaces to all the intermediate signals, parameters and variables. The source code release under the GNU General Public License (GPL) secures practical usability, inspection, and continuous improvement by the research community, allowing the discussion based on tangible code and the analysis of results obtained with real signals. The source code is complemented by a development ecosystem, consisting of a website (http://gnss-sdr.org), as well as a revision control system, instructions for users and developers, and communication tools. The project shows in detail the design of the initial blocks of the Signal Processing Plane of the receiver: signal conditioner, the acquisition block and the receiver channel, the project also extends the functionality of the acquisition and tracking modules of the GNSS-SDR receiver to track the new Galileo E1 signals available. Each section provides a theoretical analysis, implementation details of each block and subsequent testing to confirm the calculations with both synthetically generated signals and with real signals from satellites in space.
Resumo:
Drift is an important issue that impairs the reliability of gas sensing systems. Sensor aging, memory effects and environmental disturbances produce shifts in sensor responses that make initial statistical models for gas or odor recognition useless after a relatively short period (typically few weeks). Frequent recalibrations are needed to preserve system accuracy. However, when recalibrations involve numerous samples they become expensive and laborious. An interesting and lower cost alternative is drift counteraction by signal processing techniques. Orthogonal Signal Correction (OSC) is proposed for drift compensation in chemical sensor arrays. The performance of OSC is also compared with Component Correction (CC). A simple classification algorithm has been employed for assessing the performance of the algorithms on a dataset composed by measurements of three analytes using an array of seventeen conductive polymer gas sensors over a ten month period.
Resumo:
In this paper, two probabilistic adaptive algorithmsfor jointly detecting active users in a DS-CDMA system arereported. The first one, which is based on the theory of hiddenMarkov models (HMM’s) and the Baum–Wech (BW) algorithm,is proposed within the CDMA scenario and compared withthe second one, which is a previously developed Viterbi-basedalgorithm. Both techniques are completely blind in the sense thatno knowledge of the signatures, channel state information, ortraining sequences is required for any user. Once convergencehas been achieved, an estimate of the signature of each userconvolved with its physical channel response (CR) and estimateddata sequences are provided. This CR estimate can be used toswitch to any decision-directed (DD) adaptation scheme. Performanceof the algorithms is verified via simulations as well as onexperimental data obtained in an underwater acoustics (UWA)environment. In both cases, performance is found to be highlysatisfactory, showing the near–far resistance of the analyzed algorithms.
Resumo:
The Wigner higher order moment spectra (WHOS)are defined as extensions of the Wigner-Ville distribution (WD)to higher order moment spectra domains. A general class oftime-frequency higher order moment spectra is also defined interms of arbitrary higher order moments of the signal as generalizations of the Cohen’s general class of time-frequency representations. The properties of the general class of time-frequency higher order moment spectra can be related to theproperties of WHOS which are, in fact, extensions of the properties of the WD. Discrete time and frequency Wigner higherorder moment spectra (DTF-WHOS) distributions are introduced for signal processing applications and are shown to beimplemented with two FFT-based algorithms. One applicationis presented where the Wigner bispectrum (WB), which is aWHOS in the third-order moment domain, is utilized for thedetection of transient signals embedded in noise. The WB iscompared with the WD in terms of simulation examples andanalysis of real sonar data. It is shown that better detectionschemes can be derived, in low signal-to-noise ratio, when theWB is applied.
Resumo:
A systolic array to implement lattice-reduction-aided lineardetection is proposed for a MIMO receiver. The lattice reductionalgorithm and the ensuing linear detections are operated in the same array, which can be hardware-efficient. All-swap lattice reduction algorithm (ASLR) is considered for the systolic design.ASLR is a variant of the LLL algorithm, which processes all lattice basis vectors within one iteration. Lattice-reduction-aided linear detection based on ASLR and LLL algorithms have very similarbit-error-rate performance, while ASLR is more time efficient inthe systolic array, especially for systems with a large number ofantennas.
Resumo:
This paper presents several algorithms for joint estimation of the target number and state in a time-varying scenario. Building on the results presented in [1], which considers estimation of the target number only, we assume that not only the target number, but also their state evolution must be estimated. In this context, we extend to this new scenario the Rao-Blackwellization procedure of [1] to compute Bayes recursions, thus defining reduced-complexity solutions for the multi-target set estimator. A performance assessmentis finally given both in terms of Circular Position Error Probability - aimed at evaluating the accuracy of the estimated track - and in terms of Cardinality Error Probability, aimed at evaluating the reliability of the target number estimates.
Resumo:
Tot seguit presentem un entorn per analitzar senyals de tot tipus amb LDB (Local Discriminant Bases) i MLDB (Modified Local Discriminant Bases). Aquest entorn utilitza funcions desenvolupades en el marc d’una tesi en fase de desenvolupament. Per entendre part d’aquestes funcions es requereix un nivell de coneixement avançat de processament de senyals. S’han extret dels treballs realitzats per Naoki Saito [3], que s’han agafat com a punt de partida per la realització de l’algorisme de la tesi doctoral no finalitzada de Jose Antonio Soria. Aquesta interfície desenvolupada accepta la incorporació de nous paquets i funcions. Hem deixat un menú preparat per integrar Sinus IV packet transform i Cosine IV packet transform, tot i que també podem incorporar-n’hi altres. L’aplicació consta de dues interfícies, un Assistent i una interfície principal. També hem creat una finestra per importar i exportar les variables desitjades a diferents entorns. Per fer aquesta aplicació s’han programat tots els elements de les finestres, en lloc d’utilitzar el GUIDE (Graphical User Interface Development Enviroment) de MATLAB, per tal que sigui compatible entre les diferents versions d’aquest programa. En total hem fet 73 funcions en la interfície principal (d’aquestes, 10 pertanyen a la finestra d’importar i exportar) i 23 en la de l’Assistent. En aquest treball només explicarem 6 funcions i les 3 de creació d’aquestes interfícies per no fer-lo excessivament extens. Les funcions que explicarem són les més importants, ja sigui perquè s’utilitzen sovint, perquè, segons la complexitat McCabe, són les més complicades o perquè són necessàries pel processament del senyal. Passem cada entrada de dades per part de l’usuari per funcions que ens detectaran errors en aquesta entrada, com eliminació de zeros o de caràcters que no siguin números, com comprovar que són enters o que estan dins dels límits màxims i mínims que li pertoquen.
Resumo:
Inductive-based devices integrated with Si technology for biodetection applications are characterized, using simple resonant differential filter configurations. This has allowed the corroboration of the viability of the proposed circuits, which are characterized by their very high simplicity, for microinductive signal conditioning in high-sensitivity sensor devices. The simulation of these simple circuits predicts sensitivities of the differential output voltage which can achieve values in the range of 0.1-1 V/nH, depending on the coil parameters. These very high-sensitivity values open the possibility for the experimental detection of extremely small inductance changes in the devices. For real microinductive devices, both series resistance and parasitic capacitive components contribute to the decrease of the differential circuit sensitivity. Nevertheless, measurements performed using micro-coils fabricated with relatively high series resistance and coupling parasitic effects have allowed detection of changes in the range of 2 nH. which are compatible with biodetection applications with estimated detection limits below the picomolarity range.
Resumo:
The multidimensional process of physical, psychological, and social change produced by population ageing affects not only the quality of life of elderly people but also of our societies. Some dimensions of population ageing grow and expand over time (e.g. knowledge of the world events, or experience in particular situations), while others decline (e.g. reaction time, physical and psychological strength, or other functional abilities like reduced speed and tiredness). Information and Communication Technologies (ICTs) can help elderly to overcome possible limitations due to ageing. As a particular case, biometrics can allow the development of new algorithms for early detection of cognitive impairments, by processing continuous speech, handwriting or other challenged abilities. Among all possibilities, digital applications (Apps) for mobile phones or tablets can allow the dissemination of such tools. In this article, after presenting and discussing the process of population ageing and its social implications, we explore how ICTs through different Apps can lead to new solutions for facing this major demographic challenge.