46 resultados para shape descriptors
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Shape complexity has recently received attention from different fields, such as computer vision and psychology. In this paper, integral geometry and information theory tools are applied to quantify the shape complexity from two different perspectives: from the inside of the object, we evaluate its degree of structure or correlation between its surfaces (inner complexity), and from the outside, we compute its degree of interaction with the circumscribing sphere (outer complexity). Our shape complexity measures are based on the following two facts: uniformly distributed global lines crossing an object define a continuous information channel and the continuous mutual information of this channel is independent of the object discretisation and invariant to translations, rotations, and changes of scale. The measures introduced in this paper can be potentially used as shape descriptors for object recognition, image retrieval, object localisation, tumour analysis, and protein docking, among others
Resumo:
In this study, the population structure of the white grunt (Haemulon plumieri) from the northern coast of the Yucatan Peninsula was determined through an otolith shape analysis based on the samples collected in three locations: Celestún (N 20°49",W 90°25"), Dzilam (N 21°23", W 88°54") and Cancún (N 21°21",W 86°52"). The otolith outline was based on the elliptic Fourier descriptors, which indicated that the H. plumieri population in the northern coast of the Yucatan Peninsula is composed of three geographically delimited units (Celestún, Dzilam, and Cancún). Significant differences were observed in mean otolith shapes among all samples (PERMANOVA; F2, 99 = 11.20, P = 0.0002), and the subsequent pairwise comparisons showed that all samples were significantly differently from each other. Samples do not belong to a unique white grunt population, and results suggest that they might represent a structured population along the northern coast of the Yucatan Peninsula
Resumo:
En aquest treball s'analitza la contribució estèrica de les molècules a les seves propietats químiques i físiques, mitjançant l'avaluació del seu volum i de la seva mesura de semblança, a partir d'ara definits com a descriptors moleculars de primer ordre. La difeèsncia entre aquests dos conceptes ha estat aclarida: mentre que el volum és la magnitud de l'espai que ocupa la molècula com a entitat global, la mesura de semblança ens dóna una idea de com està distribuïda la densitat electrònica al llarg d'aquest volum, i reflecteix més les diferències locals existents. L'ús de diverses aproximacions per a l'obtenció d'ambdós valors ha estat analitzat sobre diferents classes d'isòmers
Resumo:
En aquest article es defineixen uns nous índexs tridimensionals per a la descripció de les molècules a partir de paràmetres derivats de la Teoria de la Semblança Molecular i de les distàncies euclidianes entre els àtoms i les càrregues atòmiques efectives. Aquests indexs,anomenats 3D, s'han aplicat a l'estudi de les relacions estructura-propietat d'una família d'hidrocarburs, i han demostrat una capacitat de descripció de tres propietats de la família (temperatura d'ebullició, temperatura de fusió i densitat) molt més acurada que quan s'utilitzen els indexs 2D clàssics
Resumo:
El present Projecte Final de Carrera s’emmarca dins el projecte HRIMAC (Herramienta de Recuperación de Imágenes Mamográficas por Análisis de Contenido), iniciat l’any 2003 i subvencionat pel Ministerio de Ciencia y Tecnología i els fons FEDER. En el projecte HRIMAC hi participa la Universitat de Girona, la Universitat Ramon Llull i especialistes de l’Hospital de Girona Josep Trueta. Aquest PFC pretén ésser una eina per testejar diferents mètodes d’extracció de característiques útils a l’hora de recuperar casos de la base de dades de HRIMAC. S’han estudiat, discutit, analitzat i implementat la caracterització de lesions segons la seva forma. S’han avaluat diferents descriptors de forma per tal de determinar quins són els millors a l’hora de tractar amb lesions mamogràfiques
Resumo:
We present an experimental and numerical study on the influence that particle aspect ratio has on the mechanical and structural properties of granular packings. For grains with maximal symmetry (squares), the stress propagation in the packing localizes forming chainlike forces analogous to the ones observed for spherical grains. This scenario can be understood in terms of stochastic models of aggregation and random multiplicative processes. As the grains elongate, the stress propagation is strongly affected. The interparticle normal force distribution tends toward a Gaussian, and, correspondingly, the force chains spread leading to a more uniform stress distribution reminiscent of the hydrostatic profiles known for standard liquids
Resumo:
Shape-dependent local differentials in cell proliferation are considered to be a major driving mechanism of structuring processes in vivo, such as embryogenesis, wound healing, and angiogenesis. However, the specific biophysical signaling by which changes in cell shape contribute to cell cycle regulation remains poorly understood. Here, we describe our study of the roles of nuclear volume and cytoskeletal mechanics in mediating shape control of proliferation in single endothelial cells. Micropatterned adhesive islands were used to independently control cell spreading and elongation. We show that, irrespective of elongation, nuclear volume and apparent chromatin decondensation of cells in G1 systematically increased with cell spreading and highly correlated with DNA synthesis (percent of cells in the S phase). In contrast, cell elongation dramatically affected the organization of the actin cytoskeleton, markedly reduced both cytoskeletal stiffness (measured dorsally with atomic force microscopy) and contractility (measured ventrally with traction microscopy), and increased mechanical anisotropy, without affecting either DNA synthesis or nuclear volume. Our results reveal that the nuclear volume in G1 is predictive of the proliferative status of single endothelial cells within a population, whereas cell stiffness and contractility are not. These findings show that the effects of cell mechanics in shape control of proliferation are far more complex than a linear or straightforward relationship. Our data are consistent with a mechanism by which spreading of cells in G1 partially enhances proliferation by inducing nuclear swelling and decreasing chromatin condensation, thereby rendering DNA more accessible to the replication machinery.
Resumo:
We have investigated the different contributions to the entropy change at the martensitic transition of different families of Cu-based shape-memory alloys. The total entropy change has been obtained through calorimetric measurements. By measuring the evolution of the magnetic susceptibility with temperature, the entropy change associated with conduction electrons has been evaluated. The contribution of the anharmonic vibrations of the lattice has also been estimated using various parameters associated with the anharmonic behavior of these alloys, collected from the literature. The results found in the present work have been compared to values published for the martensitic transition of group-IV metals. For Cu-based alloys, both electron and anharmonic contributions have been shown to be much smaller than the overall entropy change. This finding demonstrates that the harmonic vibrations of the lattice are the most relevant contribution to the stability of the bcc phase in Cu-based alloys.
Resumo:
Experimental data from ultrasonic and inelastic neutron scattering measurements are analyzed for different families of Cu-based shape-memory alloys. It is shown that the transition occurs at a value, independent of composition and alloy family, of the ratio between the elastic constants associated with the two shears necessary to accomplish the lattice distortion from the bcc to the close-packed structure. The zone boundary frequency of the TA2[110] branch evaluated at the transition point (TM), weakly depends, for each family, on composition. A linear relationship between this frequency and the inverse of the elastic constant C', both quantities evaluated at TM, has been found, in agreement with the prediction of a Landau model proposed for martensitic transformations.
Resumo:
Measurements of the entropy change at the martensitic transition of two composition-related sets of Cu-Al-Mn shape-memory alloys are reported. It is found that most of the entropy change has a vibrational origin, and depends only on the particular close-packed structure of the low-temperature phase. Using data from the literature for other Cu-based alloys, this result is shown to be general. In addition, it is shown that the martensitic structure changes from 18R to 2H when the ratio of conduction electrons per atom reaches the same value as the eutectoid point in the equilibrium phase diagram. This finding indicates that the structure of the metastable low-temperature phase is reminiscent of the equilibrium structure.