22 resultados para root locus method

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The semiclassical Wigner-Kirkwood ̄h expansion method is used to calculate shell corrections for spherical and deformed nuclei. The expansion is carried out up to fourth order in ̄h. A systematic study of Wigner-Kirkwood averaged energies is presented as a function of the deformation degrees of freedom. The shell corrections, along with the pairing energies obtained by using the Lipkin-Nogami scheme, are used in the microscopic-macroscopic approach to calculate binding energies. The macroscopic part is obtained from a liquid drop formula with six adjustable parameters. Considering a set of 367 spherical nuclei, the liquid drop parameters are adjusted to reproduce the experimental binding energies, which yields a root mean square (rms) deviation of 630 keV. It is shown that the proposed approach is indeed promising for the prediction of nuclear masses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper tests for real interest parity (RIRP) among the nineteen major OECD countries over the period 1978:Q2-1998:Q4. The econometric methods applied consist of combining the use of several unit root or stationarity tests designed for panels valid under cross-section dependence and presence of multiple structural breaks. Our results strongly support the fulfillment of the weak version of the RIRP for the studied period once dependence and structural breaks are accounted for.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proyecto de investigación realizado a partir de una estancia en el Centro Internacional de Métodos Computacionales en Ingeniería (CIMEC), Argentina, entre febrero y abril del 2007. La simulación numérica de problemas de mezclas mediante el Particle Finite Element Method (PFEM) es el marco de estudio de una futura tesis doctoral. Éste es un método desarrollado conjuntamente por el CIMEC y el Centre Internacional de Mètodos Numèrics en l'Enginyeria (CIMNE-UPC), basado en la resolución de las ecuaciones de Navier-Stokes en formulación Lagrangiana. El mallador ha sido implementado y desarrollado por Dr. Nestor Calvo, investigador del CIMEC. El desarrollo del módulo de cálculo corresponde al trabajo de tesis de la beneficiaria. La correcta interacción entre ambas partes es fundamental para obtener resultados válidos. En esta memoria se explican los principales aspectos del mallador que fueron modificados (criterios de refinamiento geométrico) y los cambios introducidos en el módulo de cálculo (librería PETSc, algoritmo predictor-corrector) durante la estancia en el CIMEC. Por último, se muestran los resultados obtenidos en un problema de dos fluidos inmiscibles con transferencia de calor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider nonlinear elliptic problems involving a nonlocal operator: the square root of the Laplacian in a bounded domain with zero Dirichlet boundary conditions. For positive solutions to problems with power nonlinearities, we establish existence and regularity results, as well as a priori estimates of Gidas-Spruck type. In addition, among other results, we prove a symmetry theorem of Gidas-Ni-Nirenberg type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We establish existence and non-existence results to the Brezis-Nirenberg type problem involving the square root of the Laplacian in a bounded domain with zero Dirichlet boundary condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The studies of Giacomo Becattini concerning the notion of the "Marshallian industrial district" have led a revolution in the field of economic development around the world. The paper offers an interpretation of the methodology adopted by Becattini. The roots are clearly Marshallian. Becattini proposes a return to the economy as a complex social science that operates in historical time. We adopt a Schumpeterian approach to the method in economic analysis in order to highlight the similarities between the Marshall and Becattini's approach. Finally the paper uses the distinction between logical time, real time and historical time which enable us to study the "localized" economic process in a Becattinian way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a new, accurate form of the heat balance integral method, termed the Combined Integral Method (or CIM). The application of this method to Stefan problems is discussed. For simple test cases the results are compared with exact and asymptotic limits. In particular, it is shown that the CIM is more accurate than the second order, large Stefan number, perturbation solution for a wide range of Stefan numbers. In the initial examples it is shown that the CIM reduces the standard problem, consisting of a PDE defined over a domain specified by an ODE, to the solution of one or two algebraic equations. The latter examples, where the boundary temperature varies with time, reduce to a set of three first order ODEs.