4 resultados para proline racemase
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
La separació d’enantiòmers (isòmers òptics) és molt important en molts diversos camps, com les síntesis quirals, biologia, i en el camp de la farmacologia especialment. És per això, que es fa necessari de disposar de tècniques i mètodes analítics ràpids, fiables i sensibles per a la separació d’enantiòmers. La present tesi s’emmarca en el camp de la separació d’enantiòmers, concretament en la preparació de fases estacionàries quirals per al seu ús en cromatografia liquida. En aquest sentit, s’ha desenvolupat la síntesi i caracterització de molècules polimèriques quirals derivades de l’aminoàcid L-prolina que incorporades en matrius de gel de sílice poden constituïr columnes quirals per a la separació d’enantiòmers per cromatografia liquida. S’han estudiat les característiques enantioselectives d’aquests nous materials en la separació de molècules quirals, trobant-se ésser satisfactòriament enantioselectius. L’interès que suscita l’obtenció d’enantiòmers a gran escala fa que la recerca s’orienti a la recerca de materials amb elevada capacitat de càrrega, és a dir, que puguin donar lloc a la separació d’elevades quantitats d’enantiòmers. Amb aquesta finalitat s’han dut a terme assaigs de capacitat de càrrega, que han posat de manifest la possible aplicació d’aquests materials a la separació preparativa d’enantiòmers. També s’ha parat especial atenció a l’estudi de les característiques de la matriu de gel de sílice, assajant-se altres materials de sílice més porosos i que permeten així treballar amb fluxos més elevats tot reduint-ne el temps d’anàlisi i els costos associats a la separació preparativa d’enantiòmers. L'estudi conformacional d'aquests nous selectors també ha estat contemplat per tal d'explicar l'enantioselectivitat específica que s'observa en certs dissolvents orgànics en els qual es duu a terme la separació dels enantiòmers.
Resumo:
Mi proyecto de tesis se basaba en el estudio del papel de profilina 1 en la formación de lamelas, para ello generamos una proteína recombinante y transducible, con el objetivo de poder modificar los niveles endógenos de profilina. Objetivos: i-caracterización bioquímica los tres sitios de union conocidos de la proteína de transducción, el sitio de unión a fosfo-inocitoles (PIP), el de unión a actina (Ac) y el de unión a poli-prolinas (PLP). ii-estudio de la polimerización in-vitro de actina - PTD4-Profilina1 iii-estudio de las proteínas componentes de lamelas inducidas por PTD4-Profilina1. Plan de trabajo: i-Para comprobar la funcionalidad los 3 sitios de unión fueron necesarias las primeras 6 semanas, ya que en primer lugar había que expresar y purificar el peptido Srv2, necesario para el ensayo de PLP. En segundo lugar, se obtuvieron los datos de las concentraciones adecuadas de lípidos para el ensayo de fosfo-inocitoles y por ultimo, se purifico la actina necesaria para el ensayo de unión a actina. Una vez establecida la funcionalidad de la proteína, se procedió a: ii-el estudio de polimerización in-vitro, que llevo 2 semanas. Demostrando que in-vitro era capaz de inhibir la polimerización de una manera similar a la endógena. Una vez terminados estos ensayos, se procedio a: iii-la caracterización inmunohistoquímica de las proteínas componentes de la lamela que fue llevado a cabo en 4 semanas. Para ello se usaron anticuerpos contra: alfa-actinina, talina, vinculina, ENA/Vasp y paxillina. Conclusiones: i-las propiedades bioquímicas de la PTD4-Profilina1 son similares a las de la profilina endógena. ii-los estudios de polimerización indican que la polimerización se produce de manera similar a la endogena. iii-los ensayos de inmunohistoquímica sugieren que, talina esta ausente y que las demás están presentes aunque en menor concentración y con otra distribución comparadas con los controles.
Resumo:
Abstract Background: The CWxP motif of transmembrane helix 6 (x: any residue) is highly conserved in class A GPCRs. Within this motif, W6.48 is a big star in the theory of the global “toggle switch” because of its key role in the activation mechanism of GPCRs upon ligand binding. With all footlights focused on W6.48, the reason why the preceding residue, C6.47, is largely conserved is still unknown. The present study is aimed to fill up this lack of knowledge by characterizing the role of C6.47 of the CWxP motif. Results: A complete analysis of available crystal structures has been made alongside with molecular dynamics simulations of model peptides to explore a possible structural role for C6.47. Conclusions: We conclude that C6.47 does not modulate the conformation of the TM6 proline kink and propose that C6.47 participates in the rearrangement of the TM6 and TM7 interface accompanying activation.
Concerted changes in N and C primary metabolism in alfalfa (Medicago sativa) under water restriction
Resumo:
Although the mechanisms of nodule N2 fixation in legumes are now well documented, some uncertainty remains on the metabolic consequences of water deficit. In most cases, little consideration is given to other organs and, therefore, the coordinated changes in metabolism in leaves, roots, and nodules are not well known. Here, the effect of water restriction on exclusively N2-fixing alfalfa (Medicago sativa L.) plants was investigated, and proteomic, metabolomic, and physiological analyses were carried out. It is shown that the inhibition of nitrogenase activity caused by water restriction was accompanied by concerted alterations in metabolic pathways in nodules, leaves, and roots. The data suggest that nodule metabolism and metabolic exchange between plant organs nearly reached homeostasis in asparagine synthesis and partitioning, as well as the N demand from leaves. Typically, there was (i) a stimulation of the anaplerotic pathway to sustain the provision of C skeletons for amino acid (e.g. glutamate and proline) synthesis; (ii) re-allocation of glycolytic products to alanine and serine/glycine; and (iii) subtle changes in redox metabolites suggesting the implication of a slight oxidative stress. Furthermore, water restriction caused little change in both photosynthetic efficiency and respiratory cost of N2 fixation by nodules. In other words, the results suggest that under water stress, nodule metabolism follows a compromise between physiological imperatives (N demand, oxidative stress) and the lower input to sustain catabolism.