12 resultados para plasma cell

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Hyperhomocysteinemia and methylenetetrahydrofolate reductase (MTHFR) gene mutation have been postulated as a possible cause of recurrent miscarriage (RM). There is a wide variation in the prevalence of MTHFR polymorphisms and homocysteine (Hcy) plasma levels among populations around the world. The present study was undertaken to investigate the possible association between hyperhomocysteinemia and its causative genetic or acquired factors and RM in Catalonia, a Mediterranean region in Spain. Methods: Sixty consecutive patients with ≥ 3 unexplained RM and 30 healthy control women having at least one child but no previous miscarriage were included. Plasma Hcy levels, MTHFR gene mutation, red blood cell (RBC) folate and vitamin B12 serum levels were measured in all subjects. Results: No significant differences were observed neither in plasma Hcy levels, RBC folate and vitamin B12 serum levels nor in the prevalence of homozygous and heterozygous MTHFR gene mutation between the two groups studied. Conclusions: In the present study RM is not associated with hyperhomocysteinemia, and/or the MTHFR gene mutation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Caveolins are a crucial component of plasma membrane (PM) caveolae but have also been localized to intracellular compartments, including the Golgi complex and lipid bodies. Mutant caveolins associated with human disease show aberrant trafficking to the PM and Golgi accumulation. We now show that the Golgi pool of mainly newly synthesized protein is detergent-soluble and predominantly in a monomeric state, in contrast to the surface pool. Caveolin at the PM is not recognized by specific caveolin antibodies unless PM cholesterol is depleted. Exit from the Golgi complex of wild-type caveolin-1 or -3, but not vesicular stomatitis virus-G protein, is modulated by changing cellular cholesterol levels. In contrast, a muscular dystrophy-associated mutant of caveolin-3, Cav3P104L, showed increased accumulation in the Golgi complex upon cholesterol treatment. In addition, we demonstrate that in response to fatty acid treatment caveolin can follow a previously undescribed pathway from the PM to lipid bodies and can move from lipid bodies to the PM in response to removal of fatty acids. The results suggest that cholesterol is a rate-limiting component for caveolin trafficking. Changes in caveolin flux through the exocytic pathway can therefore be an indicator of cellular cholesterol and fatty acid levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Membrane organization into condensed domains or rafts provides molecular platforms for selective recruitment of proteins. Cell migration is a general process that requires spatiotemporal targeting of Rac1 to membrane rafts. The protein machinery responsible for making rafts competent to recruit Rac1 remains elusive. Some members of the MAL family of proteins are involved in specialized processes dependent on this type of membrane. Because condensed membrane domains are a general feature of the plasma membrane of all mammalian cells, we hypothesized that MAL family members with ubiquitous expression and plasma membrane distribution could be involved in the organization of membranes for cell migration. We show that myeloid-associated differentiation marker (MYADM), a protein with unique features within the MAL family, colocalizes with Rac1 in membrane protrusions at the cell surface and distributes in condensed membranes. MYADM knockdown (KD) cells had altered membrane condensation and showed deficient incorporation of Rac1 to membrane raft fractions and, similar to Rac1 KD cells, exhibited reduced cell spreading and migration. Results of rescue-of-function experiments by expression of MYADM or active Rac1L61 in cells knocked down for Rac1 or MYADM, respectively, are consistent with the idea that MYADM and Rac1 act on parallel pathways that lead to similar functional outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Muscle is a major player in metabolism. It uses large amounts of glucose in the absorptive state and changes in muscle insulin-stimulated glucose uptake alter whole-body glucose disposal. Lipid substrates such as fatty acids or ketone bodies are preferentially used by muscle in certain physiological conditions. Muscle is also the main reservoir of amino acids and protein. The activity of many different plasma membrane transporters such as glucose carriers, carnitine, creatine or amino acid transporters maintain muscle metabolism by taking up or releasing substrates or metabolites across the cell surface. The goal of this review is the molecular characterization of muscle membrane transporter proteins and the analysis of their regulatory roles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In mammals, glucose transporter (GLUT)-4 plays an important role in glucose homeostasis mediating insulin action to increase glucose uptake in insulin-responsive tissues. In the basal state, GLUT4 is located in intracellular compartments and upon insulin stimulation is recruited to the plasma membrane, allowing glucose entry into the cell. Compared with mammals, fish are less efficient restoring plasma glucose after dietary or exogenous glucose administration. Recently our group cloned a GLUT4-homolog in skeletal muscle from brown trout (btGLUT4) that differs in protein motifs believed to be important for endocytosis and sorting of mammalian GLUT4. To study the traffic of btGLUT4, we generated a stable L6 muscle cell line overexpressing myc-tagged btGLUT4 (btGLUT4myc). Insulin stimulated btGLUT4myc recruitment to the cell surface, although to a lesser extent than rat-GLUT4myc, and enhanced glucose uptake. Interestingly, btGLUT4myc showed a higher steady-state level at the cell surface under basal conditions than rat-GLUT4myc due to a higher rate of recycling of btGLUT4myc and not to a slower endocytic rate, compared with rat-GLUT4myc. Furthermore, unlike rat-GLUT4myc, btGLUT4myc had a diffuse distribution throughout the cytoplasm of L6 myoblasts. In primary brown trout skeletal muscle cells, insulin also promoted the translocation of endogenous btGLUT4 to the plasma membrane and enhanced glucose transport. Moreover, btGLUT4 exhibited a diffuse intracellular localization in unstimulated trout myocytes. Our data suggest that btGLUT4 is subjected to a different intracellular traffic from rat-GLUT4 and may explain the relative glucose intolerance observed in fish.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Erythroid burst forming units (BFU-E) are proliferative cells present in peripheral blood and bone marrow which may be precursors of the erythroid colony forming cell found in the bone marrow. To examine the possible role of monocyte-macrophages in the modulation of erythropoiesis, the effect of monocytes on peripheral blood BFU-E proliferation in response to erythropoietin was investigated in the plasma clot culture system. Peripheral blood mononuclear cells from normal human donors were separated into four fractions. Fraction-I cells were obtained from the interface of Ficoll-Hypaque gradients (20-30% monocytes; 60-80% lymphocytes); fraction-II cells were fraction-I cells that were nonadherent to plastic (2-10% monocytes; 90-98% lymphocytes); fraction-III cells were obtained by incubation of fraction-II cells with carbonyl iron followed by Ficoll-Hypaque centrifugation (>99% lymphocytes); and fraction-IV cells represented the adherent population of fraction-II cells released from the plastic by lidocaine (>95% monocytes). When cells from these fractions were cultured in the presence of erythropoietin, the number of BFU-E-derived colonies was inversely proportional to the number of monocytes present (r = ¿0.96, P < 0.001). The suppressive effect of monocytes on BFU-E proliferation was confirmed by admixing autologous purified monocytes (fraction-IV cells) with fraction-III cells. Monocyte concentrations of ¿20% completely suppressed BFU-E activity. Reduction in the number of plated BFU-E by monocyte dilution could not account for these findings: a 15% reduction in the number of fraction-III cells plated resulted in only a 15% reduction in colony formation. These results indicate that monocyte-macrophages may play a significant role in the regulation of erythropoiesis and be involved in the pathogenesis of the hypoproliferative anemias associated with infection and certain neoplasia in which increased monocyte activity and monopoiesis also occur.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T-cell mediated immune response (CMI) hasbeen widely studied in relation to individual andfitness components in birds. However, few studieshave simultaneously examined individual and socialfactors and habitat-mediated variance in theimmunity of chicks and adults from the samepopulation and in the same breeding season. Weinvestigated ecological and physiological variancein CMI of male and female nestlings and adults in abreeding population of Cory's Shearwaters(Calonectrisdiomedea) in theMediterranean Sea. Explanatory variables includedindividual traits (body condition, carbon andnitrogen stable isotope ratios, plasma totalproteins, triglycerides, uric acid, osmolarity,β-hydroxy-butyrate, erythrocyte meancorpuscular diameter, hematocrit, andhemoglobin) and burrow traits(temperature, isolation, and physicalstructure). During incubation, immune responseof adult males was significantly greater than thatof females. Nestlings exhibited a lower immuneresponse than adults. Ecological and physiologicalfactors affecting immune response differed betweenadults and nestlings. General linear models showedthat immune response in adult males was positivelyassociated with burrow isolation, suggesting thatmales breeding at higher densities suffer immunesystem suppression. In contrast, immune response inchicks was positively associated with bodycondition and plasma triglyceride levels.Therefore, adult immune response appears to beassociated with social stress, whereas a trade-offbetween immune function and fasting capability mayexist for nestlings. Our results, and those fromprevious studies, provide support for anasymmetrical influence of ecological andphysiological factors on the health of differentage and sex groups within a population, and for theimportance of simultaneously considering individualand population characteristics in intraspecificstudies of immune response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T-cell mediated immune response (CMI) hasbeen widely studied in relation to individual andfitness components in birds. However, few studieshave simultaneously examined individual and socialfactors and habitat-mediated variance in theimmunity of chicks and adults from the samepopulation and in the same breeding season. Weinvestigated ecological and physiological variancein CMI of male and female nestlings and adults in abreeding population of Cory's Shearwaters(Calonectrisdiomedea) in theMediterranean Sea. Explanatory variables includedindividual traits (body condition, carbon andnitrogen stable isotope ratios, plasma totalproteins, triglycerides, uric acid, osmolarity,β-hydroxy-butyrate, erythrocyte meancorpuscular diameter, hematocrit, andhemoglobin) and burrow traits(temperature, isolation, and physicalstructure). During incubation, immune responseof adult males was significantly greater than thatof females. Nestlings exhibited a lower immuneresponse than adults. Ecological and physiologicalfactors affecting immune response differed betweenadults and nestlings. General linear models showedthat immune response in adult males was positivelyassociated with burrow isolation, suggesting thatmales breeding at higher densities suffer immunesystem suppression. In contrast, immune response inchicks was positively associated with bodycondition and plasma triglyceride levels.Therefore, adult immune response appears to beassociated with social stress, whereas a trade-offbetween immune function and fasting capability mayexist for nestlings. Our results, and those fromprevious studies, provide support for anasymmetrical influence of ecological andphysiological factors on the health of differentage and sex groups within a population, and for theimportance of simultaneously considering individualand population characteristics in intraspecificstudies of immune response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background HIV-1 infection increases plasma levels of inflammatory markers. Combination antiretroviral therapy (cART) does not restore inflammatory markers to normal levels. Since intensification of cART with raltegravir reduced CD8 T-cell activation in the Discor-Ral and IntegRal studies, we have evaluated the effect of raltegravir intensification on several soluble inflammation markers in these studies. Methods Longitudinal plasma samples (0–48 weeks) from the IntegRal (n = 67, 22 control and 45 intensified individuals) and the Discor-Ral studies (44 individuals with CD4 T-cell counts<350 cells/µl, 14 control and 30 intensified) were assayed for 25 markers. Mann-Whitney, Wilcoxon, Spearman test and linear mixed models were used for analysis. Results At baseline, different inflammatory markers were strongly associated with HCV co-infection, lower CD4 counts and with cART regimens (being higher in PI-treated individuals), but poorly correlated with detection of markers of residual viral replication. Although raltegravir intensification reduced inflammation in individuals with lower CD4 T-cell counts, no effect of intensification was observed on plasma markers of inflammation in a global analysis. An association was found, however, between reductions in immune activation and plasma levels of the coagulation marker D-dimer, which exclusively decreased in intensified patients on protease inhibitor (PI)-based cART regimens (P = 0.040). Conclusions The inflammatory profile in treated HIV-infected individuals showed a complex association with HCV co-infection, the levels of CD4 T cells and the cART regimen. Raltegravir intensification specifically reduced D-dimer levels in PI-treated patients, highlighting the link between cART composition and residual viral replication; however, raltegravir had little effect on other inflammatory markers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: One of the problems in prostate cancer (CaP) treatment is the appearance of the multidrug resistance phenotype, in which ATP-binding cassette transporters such as multidrug resistance protein 1 (MRP1) play a role. Different localizations of the transporter have been reported, some of them related to the chemoresistant phenotype. Aim: This study aimed to compare the localization of MRP1 in three prostate cell lines (normal, androgen-sensitive, and androgen-independent) in order to understand its possible role in CaP chemoresistance. Methods: MRP1 and caveolae protein markers were detected using confocal microscopy, performing colocalization techniques. Lipid raft isolation made it possible to detect these proteins by Western blot analysis. Caveolae and prostasomes were identified by electron microscopy. Results: We show that MRP1 is found in lipid raft fractions of tumor cells and that the number of caveolae increases with malignancy acquisition. MRP1 is found not only in the plasma membrane associated with lipid rafts but also in cytoplasmic accumulations colocalizing with the prostasome markers Caveolin-1 and CD59, suggesting that in CaP cells, MRP1 is localized in prostasomes. Conclusion: We hypothesize that the presence of MRP1 in prostasomes could serve as a reservoir of MRP1; thus, taking advantage of the release of their content, MRP1 could be translocated to the plasma membrane contributing to the chemoresistant phenotype. The presence of MRP1 in prostasomes could serve as a predictor of malignancy in CaP

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: One of the problems in prostate cancer (CaP) treatment is the appearance of the multidrug resistance phenotype, in which ATP-binding cassette transporters such as multidrug resistance protein 1 (MRP1) play a role. Different localizations of the transporter have been reported, some of them related to the chemoresistant phenotype. Aim: This study aimed to compare the localization of MRP1 in three prostate cell lines (normal, androgen-sensitive, and androgen-independent) in order to understand its possible role in CaP chemoresistance. Methods: MRP1 and caveolae protein markers were detected using confocal microscopy, performing colocalization techniques. Lipid raft isolation made it possible to detect these proteins by Western blot analysis. Caveolae and prostasomes were identified by electron microscopy. Results: We show that MRP1 is found in lipid raft fractions of tumor cells and that the number of caveolae increases with malignancy acquisition. MRP1 is found not only in the plasma membrane associated with lipid rafts but also in cytoplasmic accumulations colocalizing with the prostasome markers Caveolin-1 and CD59, suggesting that in CaP cells, MRP1 is localized in prostasomes. Conclusion: We hypothesize that the presence of MRP1 in prostasomes could serve as a reservoir of MRP1; thus, taking advantage of the release of their content, MRP1 could be translocated to the plasma membrane contributing to the chemoresistant phenotype. The presence of MRP1 in prostasomes could serve as a predictor of malignancy in CaP

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: One of the problems in prostate cancer (CaP) treatment is the appearance of the multidrug resistance phenotype, in which ATP-binding cassette transporters such as multidrug resistance protein 1 (MRP1) play a role. Different localizations of the transporter have been reported, some of them related to the chemoresistant phenotype. Aim: This study aimed to compare the localization of MRP1 in three prostate cell lines (normal, androgen-sensitive, and androgen-independent) in order to understand its possible role in CaP chemoresistance. Methods: MRP1 and caveolae protein markers were detected using confocal microscopy, performing colocalization techniques. Lipid raft isolation made it possible to detect these proteins by Western blot analysis. Caveolae and prostasomes were identified by electron microscopy. Results: We show that MRP1 is found in lipid raft fractions of tumor cells and that the number of caveolae increases with malignancy acquisition. MRP1 is found not only in the plasma membrane associated with lipid rafts but also in cytoplasmic accumulations colocalizing with the prostasome markers Caveolin-1 and CD59, suggesting that in CaP cells, MRP1 is localized in prostasomes. Conclusion: We hypothesize that the presence of MRP1 in prostasomes could serve as a reservoir of MRP1; thus, taking advantage of the release of their content, MRP1 could be translocated to the plasma membrane contributing to the chemoresistant phenotype. The presence of MRP1 in prostasomes could serve as a predictor of malignancy in CaP