8 resultados para plant diversity
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
In this paper we analyze the size and habitat partitioning of the vascular floras of five areas of the NE Iberian Peninsula, representing five distinct vegetation belts and three floristic regions: Mediterranean (basal belt), medio-European (submontane and montane belts) and Boreo-Alpine (subalpine and alpine belts). Each area covered over 1000 ha, and was fairly uniform in terms of potential vegetation, bedrock and bioclimate. They excluded large villages and field areas, the landscape being mainly natural or moderately anthropized.
Resumo:
Easter Island, a remote island in the Pacific Ocean, is currently primarily covered by grasslands, but palaeoecological studies have shown the former presence of different vegetation. Much of its original biota has been removed during the last two millennia, most likely by human activities, and little is known about the native flora.Macrofossil and pollen analyses of a sediment core from the Raraku crater lake have revealed the occurrence of a plant that is currently extinct from the island: Dianella cf. intermedia/adenanthera (Xanthorrhoeaceae), which grew and disappeared at the Raraku site long before human arrival. The occurrence of Dianella within the Raraku sedimentary sequence (between 9.4 and 5.4 cal. kyr B.P.) could have been linked to the existence of favorable palaeoenvironmental conditions (peatland rather than the present-day lacustrine environment) during the early to mid Holocene. This finding contributes new knowledge about indigenous plant diversity on Easter Island and reinforces the usefulness of further macrofossil and pollen analyses to identify native species on Easter Island and elsewhere.
Resumo:
A landscape mosaic is a landscape that consist of various patches, inhabited by different habitat communities over time. Agricultural mosaics area result of the long history between societies and the environment. The understanding of the driving forces for change in this landscapes, and their effect on biodiversity, allow the development of useful tools to assess and manage natural heritage. Plant diversity, endangered plant species and interesting habitats receive the center of attention, because of their capability to integrate and reflect the main changes of this landscapes after medium and long-term.
Resumo:
Microorganisms interact with plants because plants offer a wide diversity of habitats including the phyllosphere (aerial plant part), the rhizosphere (zone of influence of the root system), and the endosphere (internal transport system). Interactions of epiphytes, rhizophytes or endophytes may be detrimental or beneficial for either the microorganism or the plant and may be classified as neutralism, commensalism, synergism, mutualism, amensalism, competition or parasitism
Resumo:
Background: Carboxyl/cholinesterases (CCEs) are highly diversified in insects. These enzymes have a broad range of proposed functions, in neuro/developmental processes, dietary detoxification, insecticide resistance or hormone/pheromone degradation. As few functional data are available on purified or recombinant CCEs, the physiological role of most of these enzymes is unknown. Concerning their role in olfaction, only two CCEs able to metabolize sex pheromones have been functionally characterized in insects. These enzymes are only expressed in the male antennae, and secreted into the lumen of the pheromone-sensitive sensilla. CCEs able to hydrolyze other odorants than sex pheromones, such as plant volatiles, have not been identified. Methodology: In Spodoptera littoralis, a major crop pest, a diversity of antennal CCEs has been previously identified. We have employed here a combination of molecular biology, biochemistry and electrophysiology approaches to functionally characterize an intracellular CCE, SlCXE10, whose predominant expression in the olfactory sensilla suggested a role in olfaction. A recombinant protein was produced using the baculovirus system and we tested its catabolic properties towards a plant volatile and the sex pheromone components. Conclusion: We showed that SlCXE10 could efficiently hydrolyze a green leaf volatile and to a lesser extent the sex pheromone components. The transcript level in male antennae was also strongly induced by exposure to this plant odorant. In antennae, SlCXE10 expression was associated with sensilla responding to the sex pheromones and to plant odours. These results suggest that a CCE-based intracellular metabolism of odorants could occur in insect antennae, in addition to the extracellular metabolism occurring within the sensillar lumen. This is the first functional characterization of an Odorant- Degrading Enzyme active towards a host plant volatile.
Resumo:
Submersed vegetation is a common feature in about 70% Pyrene an high mountain (>1500 m a.s.l.) lakes. Isoetids and soft-water elodeids are common elements of this underw ater flora and can form distinct vegetation units (i.e. patches of vegetation dominated by different species) within complex mosaics of vegetation in shallow waters (<7 m). Since is oetids exert a strong influence on sediment biogeochemistry due to high radial oxygen loss, we examined the small scale characteristics of the lake environment (water and sediment) associated to vegetation patches in order to ascertain potential functional differences among them. To do so, we characterised the species composition and biomass of the main vegetation units from 11 lakes, defined plant communities based on biomass data, and then related each community with sediment properties (redox and dissolved nutrient concentration in the pore water) and water nutrient concentration within plant canopy. We also characterised lake water and sediment in areas without vegetation as a reference. A total of twenty-one vegetation units were identified, ranging from one to five per lake. A cluster analysis on biomass species composition suggested seven different macrophyte communities that were named after the most dominant species:Nitella sp.,Potamogeton praelongus, Myriophyllum alterniflorum, Sparganium angustifolium , Isoetes echinospora,Isoetes lacustris and Carex rostrata . Coupling between macrophyte communities and their immediate environment (overlying water and sediment) was manifested mainly as variation in sediment redox conditions and the dominant form of inorganic nitrogen in pore-water. These effects depended on the specific compositi on of the community, and on the allocation between above- and belowground biomass, and could be predicted with a model relating the average and standard deviation of sediment redox potential from 0 down to -20 cm, across macrophyte communities. Differences in pore-water total dissolved phosphorus were related to the trophic state of the lakes. There was no correlation between sediment and water column dissolved nutrients. However, nitrate concentrations tended to be lower in the water overlaying isoetid communities, in apparent contradiction to the patterns of dissolved nitrates in the pore-water. These tendencies were robust even when comparing the water over laying communities within the same lake, thus pointing towards a potential effect of isoetids in reducing dissolved nitrogen in the lakes.
Resumo:
Ralstonia solanacearum is a soil-borne bacterium causing the widespread disease known as bacterial wilt. Ralstonia solanacearum is also the causal agent of Moko disease of banana and brown rot of potato. Since the last R. solanacearum pathogen profile was published 10 years ago, studies concerning this plant pathogen have taken a genomic and post-genomic direction. This was pioneered by the first sequenced and annotated genome for a major plant bacterial pathogen and followed by many more genomes in subsequent years. All molecular features studied now have a genomic flavour. In the future, this will help in connecting the classical field of pathology and diversity studies with the gene content of specific strains. In this review, we summarize the recent research on this bacterial pathogen, including strain classification, host range, pathogenicity determinants, regulation of virulence genes, type III effector repertoire, effector-triggered immunity, plant signalling in response to R. solanacearum, as well as a review of different new pathosystems.
Resumo:
Pyrrolizidine alkaloids (PAs) are N-based plant secondary metabolites that function as chemical defenses against vertebrate and invertebrate herbivores. PAs can be highly variable at intraspecific level, both in their absolute and relative concentrations. Changes in the chemical composition of exotic plants when they invade a new environment have been poorly explored. Here we studied the biogeographical variation on PAs in Senecio pterophorus (Asteraceae) in the native region in Eastern South Africa, an expanded region in Western South Africa, and two introduced regions in Australia and Europe. PAs in S. pterophorus were represented by the highly toxic 1,2-unsaturated PAs and the less toxic 1,2-saturated PAs. Our results show a change in the plant chemical composition after invasion. Total PAs concentrations were highest in Australia compared to any other region. Plants from Europe contained the highest relative concentrations of 1,2-saturated PAs. The positive correlation between the chemical and the genetic distances estimated between populations suggests that the chemical profiles in the non-native regions were related to the plant dispersal routes. The decrease in the chemical diversity and the change in the absolute PAs concentrations in S. pterophorus after invasion may have consequences in the interactions between plants and herbivores in the novel habitats.