22 resultados para peptide-ELISA
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The presence of the antimicrobial peptide (AMP) biosynthetic genes srfAA (surfactin), bacA (bacylisin), fenD (fengycin), bmyB (bacyllomicin), spaS (subtilin), and ituC (iturin) was examined in 184 isolates of Bacillus spp. obtained from plant environments (aerial, rhizosphere, soil) in the Mediterranean land area of Spain. Most strains had between two and four AMP genes whereas strains with five genes were seldom detected and none of the strains had six genes. The most frequent AMP gene markers were srfAA, bacA, bmyB, and fenD, and the most frequent genotypes srfAA-bacA-bmyB and srfAAbacA-bmyB-fenD. The dominance of these particular genes in Bacillus strains associated with plants reinforces the competitive role of surfactin, bacyllomicin, fengycin, and bacilysin in the fitness of strains in natural environments. The use of these AMP gene markers may assist in the selection of putative biological control agents of plant pathogens
Resumo:
Annotation of protein-coding genes is a key goal of genome sequencing projects. In spite of tremendous recent advances in computational gene finding, comprehensive annotation remains a challenge. Peptide mass spectrometry is a powerful tool for researching the dynamic proteome and suggests an attractive approach to discover and validate protein-coding genes. We present algorithms to construct and efficiently search spectra against a genomic database, with no prior knowledge of encoded proteins. By searching a corpus of 18.5 million tandem mass spectra (MS/MS) from human proteomic samples, we validate 39,000 exons and 11,000 introns at the level of translation. We present translation-level evidence for novel or extended exons in 16 genes, confirm translation of 224 hypothetical proteins, and discover or confirm over 40 alternative splicing events. Polymorphisms are efficiently encoded in our database, allowing us to observe variant alleles for 308 coding SNPs. Finally, we demonstrate the use of mass spectrometry to improve automated gene prediction, adding 800 correct exons to our predictions using a simple rescoring strategy. Our results demonstrate that proteomic profiling should play a role in any genome sequencing project.
Resumo:
Brain acetylcholinesterase (AChE) forms stable complexes with amyloid-beta peptide (Abeta) during its assembly into filaments, in agreement with its colocalization with the Abeta deposits of Alzheimer's brain. The association of the enzyme with nascent Abeta aggregates occurs as early as after 30 min of incubation. Analysis of the catalytic activity of the AChE incorporated into these complexes shows an anomalous behavior reminiscent of the AChE associated with senile plaques, which includes a resistance to low pH, high substrate concentrations, and lower sensitivity to AChE inhibitors. Furthermore, the toxicity of the AChE-amyloid complexes is higher than that of the Abeta aggregates alone. Thus, in addition to its possible role as a heterogeneous nucleator during amyloid formation, AChE, by forming such stable complexes, may increase the neurotoxicity of Abeta fibrils and thus may determine the selective neuronal loss observed in Alzheimer's brain.
Resumo:
Background: A rapid phage display method for the elucidation of cognate peptide specific ligand for receptors is described. The approach may be readily integrated into the interface of genomic and proteomic studies to identify biologically relevant ligands.Methods: A gene fragment library from influenza coat protein haemagglutinin (HA) gene was constructed by treating HA cDNA with DNAse I to create 50 ¿ 100 bp fragments. These fragments were cloned into plasmid pORFES IV and in-frame inserts were selected. These in-frame fragment inserts were subsequently cloned into a filamentous phage display vector JC-M13-88 for surface display as fusions to a synthetic copy of gene VIII. Two well characterized antibodies, mAb 12CA5 and pAb 07431, directed against distinct known regions of HA were used to pan the library. Results: Two linear epitopes, HA peptide 112 ¿ 126 and 162¿173, recognized by mAb 12CA5 and pAb 07431, respectively, were identified as the cognate epitopes.Conclusion: This approach is a useful alternative to conventional methods such as screening of overlapping synthetic peptide libraries or gene fragment expression libraries when searching for precise peptide protein interactions, and may be applied to functional proteomics.
Resumo:
Introduction: Evidence suggests that citrullinated fibrin(ogen) may be a potential in vivo target of anticitrullinated protein/peptide antibodies (ACPA) in rheumatoid arthritis (RA). We compared the diagnostic yield of three enzyme-linked immunosorbent assay (ELISA) tests by using chimeric fibrin/filaggrin citrullinated synthetic peptides (CFFCP1, CFFCP2, CFFCP3) with a commercial CCP2-based test in RA and analyzed their prognostic values in early RA. Methods: Samples from 307 blood donors and patients with RA (322), psoriatic arthritis (133), systemic lupus erythematosus (119), and hepatitis C infection (84) were assayed by using CFFCP- and CCP2-based tests. Autoantibodies also were analyzed at baseline and during a 2-year follow-up in 98 early RA patients to determine their prognostic value. Results: With cutoffs giving 98% specificity for RA versus blood donors, the sensitivity was 72.1% for CFFCP1, 78.0% for CFFCP2, 71.4% for CFFCP3, and 73.9% for CCP2, with positive predictive values greater than 97% in all cases. CFFCP sensitivity in RA increased to 80.4% without losing specificity when positivity was considered as any positive anti-CFFCP status. Specificity of the three CFFCP tests versus other rheumatic populations was high (> 90%) and similar to those for the CCP2. In early RA, CFFCP1 best identified patients with a poor radiographic outcome. Radiographic progression was faster in the small subgroup of CCP2-negative and CFFCP1-positive patients than in those negative for both autoantibodies. CFFCP antibodies decreased after 1 year, but without any correlation with changes in disease activity. Conclusions: CFFCP-based assays are highly sensitive and specific for RA. Early RA patients with anti-CFFCP1 antibodies, including CCP2-negative patients, show greater radiographic progression.
Resumo:
Kahalalide compounds are peptides that are isolated from a Hawaiian herbivorous marine species of mollusc, Elysia rufescens, and its diet, the green alga Bryopsis sp. Kahalalide F and its synthetic analogues are the most promising compounds of the Kahalalide family because they show anti-tumoral activity. Linear solid-phase syntheses of Kahalalide F have been reported. Here we describe several new improved synthetic routes based on convergent approaches with distinct orthogonal protection schemes for the preparation of Kahaladide analogues. These strategies allow a better control and characterization of the intermediates because more reactions are performed in solution. Five derivatives of Kahalalide F were synthesized using several convergent approaches.
Resumo:
In Drosophila, the insulin-signaling pathway controls some life history traits, such as fertility and lifespan, and it is considered to be the main metabolic pathway involved in establishing adult body size. Several observations concerning variation in body size in the Drosophila genus are suggestive of its adaptive character. Genes encoding proteins in this pathway are, therefore, good candidates to have experienced adaptive changes and to reveal the footprint of positive selection. The Drosophila insulin-like peptides (DILPs) are the ligands that trigger the insulin-signaling cascade. In Drosophila melanogaster, there are several peptides that are structurally similar to the single mammalian insulin peptide. The footprint of recent adaptive changes on nucleotide variation can be unveiled through the analysis of polymorphism and divergence. With this aim, we have surveyed nucleotide sequence variation at the dilp1-7 genes in a natural population of D. melanogaster. The comparison of polymorphism in D. melanogaster and divergence from D. simulans at different functional classes of the dilp genes provided no evidence of adaptive protein evolution after the split of the D. melanogaster and D. simulans lineages. However, our survey of polymorphism at the dilp gene regions of D. melanogaster has provided some evidence for the action of positive selection at or near these genes. The regions encompassing the dilp1-4 genes and the dilp6 gene stand out as likely affected by recent adaptive events.
Resumo:
Amyloid-β peptide (Aβ) aggregates induce nitro-oxidative stress, contributing to the characteristic neurodegeneration found in Alzheimer's disease (AD). One of the most strongly nitrotyrosinated proteins in AD is the triosephosphate isomerase (TPI) enzyme which regulates glycolytic flow, and its efficiency decreased when it is nitrotyrosinated. The main aims of this study were to analyze the impact of TPI nitrotyrosination on cell viability and to identify the mechanism behind this effect. In human neuroblastoma cells (SH-SY5Y), we evaluated the effects of Aβ42 oligomers on TPI nitrotyrosination. We found an increased production of methylglyoxal (MG), a toxic byproduct of the inefficient nitro-TPI function. The proapoptotic effects of Aβ42 oligomers, such as decreasing the protective Bcl2 and increasing the proapoptotic caspase-3 and Bax, were prevented with a MG chelator. Moreover, we used a double mutant TPI (Y165F and Y209F) to mimic nitrosative modifications due to Aβ action. Neuroblastoma cells transfected with the double mutant TPI consistently triggered MG production and a decrease in cell viability due to apoptotic mechanisms. Our data show for the first time that MG is playing a key role in the neuronal death induced by Aβ oligomers. This occurs because of TPI nitrotyrosination, which affects both tyrosines associated with the catalytic center.
Resumo:
Background The MPER region of the HIV-1 envelope glycoprotein gp41 is targeted by broadly neutralizing antibodies. However, the localization of this epitope in a hydrophobic environment seems to hamper the elicitation of these antibodies in HIV infected individuals. We have quantified and characterized anti-MPER antibodies by ELISA and by flow cytometry using a collection of mini gp41-derived proteins expressed on the surface of 293T cells. Longitudinal plasma samples from 35 HIV-1 infected individuals were assayed for MPER recognition and MPER-dependent neutralizing capacity using HIV-2 viruses engrafted with HIV-1 MPER sequences. Results Miniproteins devoid of the cysteine loop of gp41 exposed the MPER on 293T cell membrane. Anti-MPER antibodies were identified in most individuals and were stable when analyzed in longitudinal samples. The magnitude of the responses was strongly correlated with the global response to the HIV-1 envelope glycoprotein, suggesting no specific limitation for anti-MPER antibodies. Peptide mapping showed poor recognition of the C-terminal MPER moiety and a wide presence of antibodies against the 2F5 epitope. However, antibody titers failed to correlate with 2F5-blocking activity and, more importantly, with the specific neutralization of HIV-2 chimeric viruses bearing the HIV-1 MPER sequence; suggesting a strong functional heterogeneity in anti-MPER humoral responses. Conclusions Anti-MPER antibodies can be detected in the vast majority of HIV-1 infected individuals and are generated in the context of the global anti-Env response. However, the neutralizing capacity is heterogeneous suggesting that eliciting neutralizing anti-MPER antibodies by immunization might require refinement of immunogens to skip nonneutralizing responses.
Resumo:
Introduction: Evidence suggests that citrullinated fibrin(ogen) may be a potential in vivo target of anticitrullinated protein/peptide antibodies (ACPA) in rheumatoid arthritis (RA). We compared the diagnostic yield of three enzyme-linked immunosorbent assay (ELISA) tests by using chimeric fibrin/filaggrin citrullinated synthetic peptides (CFFCP1, CFFCP2, CFFCP3) with a commercial CCP2-based test in RA and analyzed their prognostic values in early RA. Methods: Samples from 307 blood donors and patients with RA (322), psoriatic arthritis (133), systemic lupus erythematosus (119), and hepatitis C infection (84) were assayed by using CFFCP- and CCP2-based tests. Autoantibodies also were analyzed at baseline and during a 2-year follow-up in 98 early RA patients to determine their prognostic value. Results: With cutoffs giving 98% specificity for RA versus blood donors, the sensitivity was 72.1% for CFFCP1, 78.0% for CFFCP2, 71.4% for CFFCP3, and 73.9% for CCP2, with positive predictive values greater than 97% in all cases. CFFCP sensitivity in RA increased to 80.4% without losing specificity when positivity was considered as any positive anti-CFFCP status. Specificity of the three CFFCP tests versus other rheumatic populations was high (> 90%) and similar to those for the CCP2. In early RA, CFFCP1 best identified patients with a poor radiographic outcome. Radiographic progression was faster in the small subgroup of CCP2-negative and CFFCP1-positive patients than in those negative for both autoantibodies. CFFCP antibodies decreased after 1 year, but without any correlation with changes in disease activity. Conclusions: CFFCP-based assays are highly sensitive and specific for RA. Early RA patients with anti-CFFCP1 antibodies, including CCP2-negative patients, show greater radiographic progression.
Resumo:
Background: We use an approach based on Factor Analysis to analyze datasets generated for transcriptional profiling. The method groups samples into biologically relevant categories, and enables the identification of genes and pathways most significantly associated to each phenotypic group, while allowing for the participation of a given gene in more than one cluster. Genes assigned to each cluster are used for the detection of pathways predominantly activated in that cluster by finding statistically significant associated GO terms. We tested the approach with a published dataset of microarray experiments in yeast. Upon validation with the yeast dataset, we applied the technique to a prostate cancer dataset. Results: Two major pathways are shown to be activated in organ-confined, non-metastatic prostate cancer: those regulated by the androgen receptor and by receptor tyrosine kinases. A number of gene markers (HER3, IQGAP2 and POR1) highlighted by the software and related to the later pathway have been validated experimentally a posteriori on independent samples. Conclusion: Using a new microarray analysis tool followed by a posteriori experimental validation of the results, we have confirmed several putative markers of malignancy associated with peptide growth factor signalling in prostate cancer and revealed others, most notably ERRB3 (HER3). Our study suggest that, in primary prostate cancer, HER3, together or not with HER4, rather than in receptor complexes involving HER2, could play an important role in the biology of these tumors. These results provide new evidence for the role of receptor tyrosine kinases in the establishment and progression of prostate cancer.
Resumo:
p-Nitrobenzyloxycarbonyl was used as temporary protecting group for the -amino function in solid-phase peptide synthesis. The corresponding derivatives are solids, easy to be synthesized, and perform well in the solid-phase mode. pNZ is removed in practical neutral conditions in the presence of catalytic amounts of acid. They are orthogonal with the most common protecting groups used in peptide chemistry. They are specially useful in combination with Fmoc chemistry to overcome those side reactions associated with the used of the piperidine such DKP and aspartiimide formation. The flexibility of pNZ can be very useful for the preparation of libraries of small organic molecules.
Resumo:
Monomers allowing for the introduction of [2,5-dimethylfuran]-protected maleimides into polyamides such as peptides, peptide nucleic acids, and peptoids were prepared, as well as the corresponding oligomers. Suitable maleimide deprotection conditions were established in each case. The stability of the adducts generated by Michael-type maleimide-thiol reaction and Diels-Alder cycloaddition to maleimide deprotection conditions was exploited to prepare a variety of conjugates from peptide and PNA scaffolds incorporating one free and one protected maleimide. The target molecules were synthesized by using two subsequent maleimide-involving click reactions separated by a maleimide deprotection step. Carrying out maleimide deprotection and conjugation simultaneously gave better results than performing the two reactions subsequently.
Resumo:
Kahalalide compounds are peptides that are isolated from a Hawaiian herbivorous marine species of mollusc, Elysia rufescens, and its diet, the green alga Bryopsis sp. Kahalalide F and its synthetic analogues are the most promising compounds of the Kahalalide family because they show anti-tumoral activity. Linear solid-phase syntheses of Kahalalide F have been reported. Here we describe several new improved synthetic routes based on convergent approaches with distinct orthogonal protection schemes for the preparation of Kahaladide analogues. These strategies allow a better control and characterization of the intermediates because more reactions are performed in solution. Five derivatives of Kahalalide F were synthesized using several convergent approaches.
Resumo:
Membrane active peptides can perturb the lipid bilayer in several ways, such as poration and fusion of the target cell membrane, and thereby efficiently kill bacterial cells. We probe here the mechanistic basis of membrane poration and fusion caused by membrane-active, antimicrobial peptides. We show that the cyclic antimicrobial peptide, BPC194, inhibits growth of Gram-negative bacteria and ruptures the outer and inner membrane at the onset of killing, suggesting that not just poration is taking place at the cell envelope. To simplify the system and to better understand the mechanism of action, we performed Förster resonance energy transfer and cryogenic transmission electron microscopy studies in model membranes and show that the BPC194 causes fusion of vesicles. The fusogenic action is accompanied by leakage as probed by dual-color fluorescence burst analysis at a single liposome level. Atomistic molecular dynamics simulations reveal how the peptides are able to simultaneously perturb the membrane towards porated and fused states. We show that the cyclic antimicrobial peptides trigger both fusion and pore formation and that such large membrane perturbations have a similar mechanistic basis