5 resultados para pathogenicity to mice

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In many species, the introduction of double-stranded RNA induces potent and specific gene silencing, referred to as RNA interference. This phenomenon, which is based on targeted degradation of mRNAs and occurs in almost any eukaryote, from trypanosomes to mice including plants and fungi, has sparked general interest from both applied and fundamental standpoints. RNA interference, which is currently used to investigate gene function in a variety of systems, is linked to natural resistance to viruses and transposon silencing, as if it were a primitive immune system involved in genome surveillance. Here, we review the mechanism of RNA interference in post-transcriptional gene silencing, its function in nature, its value for functional genomic analysis, and the modifications and improvements that may make it more efficient and inheritable. We also discuss the future directions of this versatile technique in both fundamental and applied science.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Four methods were tested to assess the fire-blight disease response on grafted pear plants. The leaves of the plants were inoculated with Erwinia amylovora suspensions by pricking with clamps, cutting with scissors, local infiltration, and painting a bacterial suspension onto the leaves with a paintbrush. The effects of the inoculation methods were studied in dose-time-response experiments carried out in climate chambers under quarantine conditions. A modified Gompertz model was used to analyze the disease-time relatiobbnships and provided information on the rate of infection progression (rg) and time delay to the start of symptoms (t0). The disease-pathogen-dose relationships were analyzed according to a hyperbolic saturation model in which the median effective dose (ED50) of the pathogen and maximum disease level (ymax) were determined. Localized infiltration into the leaf mesophile resulted in the early (short t0) but slow (low rg) development of infection whereas in leaves pricked with clamps disease symptoms developed late (long t0) but rapidly (high rg). Paintbrush inoculation of the plants resulted in an incubation period of medium length, a moderate rate of infection progression, and low ymax values. In leaves inoculated with scissors, fire-blight symptoms developed early (short t0) and rapidly (high rg), and with the lowest ED50 and the highest ymax

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Stress can cause damage and atrophy of neurons in the hippocampus by deregulating the expression of neurotrophic factors that promote neuronal plasticity. The endocannabinoid system represents a physiological substrate involved in neuroprotection at both cellular and emotional levels. The lack of CB1 receptor alters neuronal plasticity and originates an anxiety-like phenotype in mice. In the present study, CB1 knockout mice exhibited an augmented response to stress revealed by the increased despair behavior and corticosterone levels showed in the tail suspension test and decreased brain derived neurotrophic factor (BDNF) levels in the hippocampus. Interestingly, local administration of BDNF in the hippocampus reversed the increased despair behavior of CB1 knockout mice, confirming the crucial role played by BDNF on the emotional impairment of these mutants. The neurotrophic deficiency seems to be specific for BDNF since no differences were found in the levels of NGF and NT-3, two additional neurotrophic factors. Moreover, BDNF impairment is not related to the activity of its specific receptor TrkB or the activity of the transcription factor CREB. These results suggest that the lack of CB1 receptor originates an enhanced response to stress and neuronal plasticity by decreasing BDNF levels in the hippocampus that lead to impairment in the responses to emotional disturbances.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Voltage-gated K+ channels of the Kv3 subfamily have unusual electrophysiological properties, including activation at very depolarized voltages (positive to −10 mV) and very fast deactivation rates, suggesting special roles in neuronal excitability. In the brain, Kv3 channels are prominently expressed in select neuronal populations, which include fast-spiking (FS) GABAergic interneurons of the neocortex, hippocampus, and caudate, as well as other high-frequency firing neurons. Although evidence points to a key role in high-frequency firing, a definitive understanding of the function of these channels has been hampered by a lack of selective pharmacological tools. We therefore generated mouse lines in which one of the Kv3 genes, Kv3.2, was disrupted by gene-targeting methods. Whole-cell electrophysiological recording showed that the ability to fire spikes at high frequencies was impaired in immunocytochemically identified FS interneurons of deep cortical layers (5-6) in which Kv3.2 proteins are normally prominent. No such impairment was found for FS neurons of superficial layers (2-4) in which Kv3.2 proteins are normally only weakly expressed. These data directly support the hypothesis that Kv3 channels are necessary for high-frequency firing. Moreover, we found that Kv3.2 −/− mice showed specific alterations in their cortical EEG patterns and an increased susceptibility to epileptic seizures consistent with an impairment of cortical inhibitory mechanisms. This implies that, rather than producing hyperexcitability of the inhibitory interneurons, Kv3.2 channel elimination suppresses their activity. These data suggest that normal cortical operations depend on the ability of inhibitory interneurons to generate high-frequency firing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In Duchenne muscular dystrophy (DMD), a persistently altered and reorganizing extracellular matrix (ECM) within inflamed muscle promotes damage and dysfunction. However, the molecular determinants of the ECM that mediate inflammatory changes and faulty tissue reorganization remain poorly defined. Here, we show that fibrin deposition is a conspicuous consequence of muscle-vascular damage in dystrophic muscles of DMD patients and mdx mice and that elimination of fibrin(ogen) attenuated dystrophy progression in mdx mice. These benefits appear to be tied to: (i) a decrease in leukocyte integrin α(M)β(2)-mediated proinflammatory programs, thereby attenuating counterproductive inflammation and muscle degeneration; and (ii) a release of satellite cells from persistent inhibitory signals, thereby promoting regeneration. Remarkably, Fib-gamma(390-396A) (Fibγ(390-396A)) mice expressing a mutant form of fibrinogen with normal clotting function, but lacking the α(M)β(2) binding motif, ameliorated dystrophic pathology. Delivery of a fibrinogen/α(M)β(2) blocking peptide was similarly beneficial. Conversely, intramuscular fibrinogen delivery sufficed to induce inflammation and degeneration in fibrinogen-null mice. Thus, local fibrin(ogen) deposition drives dystrophic muscle inflammation and dysfunction, and disruption of fibrin(ogen)-α(M)β(2) interactions may provide a novel strategy for DMD treatment.