4 resultados para passive safety systems
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
This project is a tool for engineers and technicians in the development and knowledge of the most important construction equipment, tower crane. It consists of a memory, 10 annexes and an Excel spreadsheet to do the calculations automatically . Some of these annexes are: Annex 1. Types of cranes and elements of them. Annex 2. Mounting and dismounting. Annex 3. Useful clamping loads. Annex 4. Safety systems , etc. Every single annex separately, provides detailed explanations , both written and visual of problems and solutions in the world of tower cranes . Professionals are able to learn in an orderly way, definitions, developments, calculations, processes etc., Which will greatly easy people's job in the construction and in the writing of a project. Also a spreadsheet with the Excel program has been made to help engineers on calculations. This sheet is protected and it can be accesed only to enter the data needed to perform the calculations of the safety factor and weight of shoes . The results will tell us if there is a risk of tipping of the tower crane and the weight of shoes. This tool will greatly help engineers on their calculations. All documentation is based on laws, regulations and no legal rules status, they guarantee that we are always within the Spanish and legislative Autonomous framework. This fact makes the professional carries out a project to a successful future and a legalistic view. Also note that these rules are in constant change, which makes it necessary for the professional to always be in a constant revision of the legislation.
Resumo:
Critical real-time ebedded (CRTE) Systems require safe and tight worst-case execution time (WCET) estimations to provide required safety levels and keep costs low. However, CRTE Systems require increasing performance to satisfy performance needs of existing and new features. Such performance can be only achieved by means of more agressive hardware architectures, which are much harder to analyze from a WCET perspective. The main features considered include cache memòries and multi-core processors.Thus, althoug such features provide higher performance, corrent WCET analysis methods are unable to provide tight WCET estimations. In fact, WCET estimations become worse than for simple rand less powerful hardware. The main reason is the fact that hardware behavior is deterministic but unknown and, therefore, the worst-case behavior must be assumed most of the time, leading to large WCET estimations. The purpose of this project is developing new hardware designs together with WCET analysis tools able to provide tight and safe WCET estimations. In order to do so, those pieces of hardware whose behavior is not easily analyzable due to lack of accurate information during WCET analysis will be enhanced to produce a probabilistically analyzable behavior. Thus, even if the worst-case behavior cannot be removed, its probabilty can be bounded, and hence, a safe and tight WCET can be provided for a particular safety level in line with the safety levels of the remaining components of the system. During the first year the project we have developed molt of the evaluation infraestructure as well as the techniques hardware techniques to analyze cache memories. During the second year those techniques have been evaluated, and new purely-softwar techniques have been developed.
Resumo:
The increased fragility of the banking industry has generatedgrowing concern about the risks associated with the paymentsystems. Although in most industrial countries differentinterbank payment systems coexist, little is really knownabout their propierties in terms of risk and efficiency. Wetackle this question by comparing the two main types ofpayment systems, gross and net, in a framework whereuncertainty arises from several sources: the time ofconsumption, the location of consumption and the return oninvestment. Payments across locations can be made either bydirectly transferrring liquidity or by transferring claimsagainst the bank in the other location. The two mechanism areinterpreted as the gross and net settlement systems ininterbank payments. We characterize the equilibria in the twosystems and identify the trade-off in terms of safety andefficiency.
Resumo:
The material presented in the these notes covers the sessions Modelling of electromechanical systems, Passive control theory I and Passive control theory II of the II EURON/GEOPLEX Summer School on Modelling and Control of Complex Dynamical Systems.We start with a general description of what an electromechanical system is from a network modelling point of view. Next, a general formulation in terms of PHDS is introduced, and some of the previous electromechanical systems are rewritten in this formalism. Power converters, which are variable structure systems (VSS), can also be given a PHDS form.We conclude the modelling part of these lectures with a rather complex example, showing the interconnection of subsystems from several domains, namely an arrangement to temporally store the surplus energy in a section of a metropolitan transportation system based on dc motor vehicles, using either arrays of supercapacitors or an electric poweredflywheel. The second part of the lectures addresses control of PHD systems. We first present the idea of control as power connection of a plant and a controller. Next we discuss how to circumvent this obstacle and present the basic ideas of Interconnection and Damping Assignment (IDA) passivity-based control of PHD systems.