2 resultados para parasitic infection

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prospective observational study of all HIV infected immigrants visited at the Infectious Diseases Department of the Hospital Universitari Vall d’Hebron from June 2010 to May 2011. Screening of most prevalent tropical diseases was performed according to geographical origin. 190 patients were included. Overall, 36.8% (70/190) patients had at least one positive result for any parasitic disease, including Chagas disease, schistosomiasis, strongyloidiasis, leishmaniasis, intestinal parasitosis and malaria. We propose a screening and management strategy of latent parasitic infections in immigrant HIV infected patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report for the scientific sojourn carried out at the Université Catholique de Louvain, Belgium, from March until June 2007. In the first part, the impact of important geometrical parameters such as source and drain thickness, fin spacing, spacer width, etc. on the parasitic fringing capacitance component of multiple-gate field-effect transistors (MuGFET) is deeply analyzed using finite element simulations. Several architectures such as single gate, FinFETs (double gate), triple-gate represented by Pi-gate MOSFETs are simulated and compared in terms of channel and fringing capacitances for the same occupied die area. Simulations highlight the great impact of diminishing the spacing between fins for MuGFETs and the trade-off between the reduction of parasitic source and drain resistances and the increase of fringing capacitances when Selective Epitaxial Growth (SEG) technology is introduced. The impact of these technological solutions on the transistor cut-off frequencies is also discussed. The second part deals with the study of the effect of the volume inversion (VI) on the capacitances of undoped Double-Gate (DG) MOSFETs. For that purpose, we present simulation results for the capacitances of undoped DG MOSFETs using an explicit and analytical compact model. It monstrates that the transition from volume inversion regime to dual gate behaviour is well simulated. The model shows an accurate dependence on the silicon layer thickness,consistent withtwo dimensional numerical simulations, for both thin and thick silicon films. Whereas the current drive and transconductance are enhanced in volume inversion regime, our results show thatintrinsic capacitances present higher values as well, which may limit the high speed (delay time) behaviour of DG MOSFETs under volume inversion regime.