6 resultados para paperi, pöly, mittaus

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of exposure to the type species for Karlodinium veneficum (PLY # 103) on immune function and histopathology in the blue mussel Mytilus edulis were investigated. Mussels from Whitsand Bay, Cornwall (UK) were exposed to K. veneficum (PLY # 103) for 3 and 6 days. Assays for immune function included total and differential cells counts, phagocytosis and release of extra cellular reactive oxygen species. Histology was carried out on digestive gland and mantle tissues. The toxin cell quota for K. veneficum (PLY #103) was measured by liquid chromatography-mass spectrometry detecting two separable toxins KvTx1 (11.6 ± 5.4 ng/ml) and KvTx2 (47.7 ± 4.2 ng/ml). There were significant effects of K. veneficum exposure with increasing phagocytosis and release of reactive oxygen species following 6 days exposure. There were no significant effects on total cell counts. However, differential cell counts did show significant effects after 3 days exposure to the toxic alga. All mussels produced faeces but not pseudofaeces indicating that algae were not rejected prior to ingestion. Digestive glands showed ingestion of the algae and hemocyte infiltration after 3 days of exposure, whereas mantle tissue did not show differences between treatments. As the effects of K. veneficum were not observed in the mantle tissue it can be hypothesized that the algal concentration was not high enough, or exposure long enough, to affect all the tissues. Despite being in culture for more than 50 years the original K. veneficum isolate obtained by Mary Parke still showed toxic effects on mussels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The failure mechanism of a voided CFRP 0-90° cross-ply laminate under tensile loads applied in one direction was studied in this Final Degree Project. For this purpose, voided coupons were manufactured for being tested and a FEA was done. In both investigations, voids were placed in 90º and 0º direction, in order to understand the void location influence. On the one hand, the behaviour of the voided laminates was investigated through a FEM in order to preview the stress distribution within the material. On the other hand, voided specimens where manufactured by applying blowing agent in between the inner layers. These specimens were tested by a quasi-static step wise tensile test where data showing its real behaviour was collected. Specimens were X-rayed after each step of the test in order to investigate the failure mechanism of the composite. Data from the test was studied so that relations such as strength of the laminates, crack density per stress, void length per first crack at the void and void area per first crack at the specimen could be characterized

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an experimental study of the effects of tow-drop gaps in Variable Stiffness Panels under drop-weight impact events. Two different configurations, with and without ply-staggering, have been manufactured by Automated Fibre Placement and compared with their baseline counterpart without defects. For the study of damage resistance, three levels of low velocity impact energy are generated with a drop-weight tower. The damage area is analysed by means of ultrasonic inspection. Results of the analysed defect configurations indicate that the influence of gap defects is only relevant under small impact energy values. However, in the case of damage tolerance, the residual compressive strength after impact does not present significant differences to that of conventional straight fibre laminates. This indicates that the strength reduction is driven mainly by the damage caused by the impact event rather than by the influence of manufacturing-induced defects

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Automated Fiber Placement is being extensively used in the production of major composite components for the aircraft industry. This technology enables the production of tow-steered panels, which have been proven to greatly improve the structural efficiency of composites by means of in-plane stiffness variation and load redistribution. However, traditional straight-fiber architectures are still preferred. One of the reasons behind this is related to the uncertainties, as a result of process-induced defects, in the mechanical performance of the laminates. This experimental work investigates the effect of the fiber angle discontinuities between different tow courses in a ply on the un-notched and open-hole tensile strength of the laminate. The influence of several manufacturing parameters are studied in detail. The results reveal that 'ply staggering' and '0% gap coverage' is an effective combination in reducing the influence of defects in these laminates

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new damage model based on a micromechanical analysis of cracked [± θ / 90n ]s laminates subjected to multiaxial loads is proposed. The model predicts the onset and accumulation of transverse matrix cracks in uniformly stressed laminates, the effect of matrix cracks on the stiffness of the laminate, as well as the ultimate failure of the laminate. The model also accounts for the effect of the ply thickness on the ply strength. Predictions relating the elastic properties of several laminates and multiaxial loads are presented

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A continuum damage model for the prediction of damage onset and structural collapse of structures manufactured in fiber-reinforced plastic laminates is proposed. The principal damage mechanisms occurring in the longitudinal and transverse directions of a ply are represented by a damage tensor that is fixed in space. Crack closure under load reversal effects are taken into account using damage variables established as a function of the sign of the components of the stress tensor. Damage activation functions based on the LaRC04 failure criteria are used to predict the different damage mechanisms occurring at the ply level. The constitutive damage model is implemented in a finite element code. The objectivity of the numerical model is assured by regularizing the dissipated energy at a material point using Bazant’s Crack Band Model. To verify the accuracy of the approach, analyses ofcoupon specimens were performed, and the numerical predictions were compared with experimental data