3 resultados para oxygen partial pressure
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
In this report we present the growth process of the cobalt oxide system using reactive electron beam deposition. In that technique, a target of metallic cobalt is evaporated and its atoms are in-flight oxidized in an oxygen rich reactive atmosphere before reaching the surface of the substrate. With a trial and error procedure the deposition parameters have been optimized to obtain the correct stoichiometry and crystalline phase. The evaporation conditions to achieve the correct cobalt oxide salt rock structure, when evaporating over amorphous silicon nitride, are: 525 K of substrate temperature, 2.5·10-4 mbar of oxygen partial pressure and 1 Å/s of evaporation rate. Once the parameters were optimized a set of ultra thin film ranging from samples of 1 nm of nominal thickness to 20nm thick and bulk samples were grown. With the aim to characterize the samples and study their microstructure and morphology, X-ray diffraction, transmission electron microscopy, electron diffraction, energy dispersive X-ray spectroscopy and quasi-adiabatic nanocalorimetry techniques are utilised. The final results show a size dependent effect of the antiferromagnetic transition. Its Néel temperature becomes depressed as the size of the grains forming the layer decreases.
Resumo:
A simple and most promising oxide-assisted catalyst-free method is used to prepare silicon nitride nanowires that give rise to high yield in a short time. After a brief analysis of the state of the art, we reveal the crucial role played by the oxygen partial pressure: when oxygen partial pressure is slightly below the threshold of passive oxidation, a high yield inhibiting the formation of any silica layer covering the nanowires occurs and thanks to the synthesis temperature one can control nanowire dimensions