13 resultados para oxidation potential
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Significance: Current lifestyles with high-energy diets and little exercise are triggering an alarming growth in obesity. Excess of adiposity is leading to severe increases in associated pathologies, such as insulin resistance, type 2 diabetes, atherosclerosis, cancer, arthritis, asthma, and hypertension. This, together with the lack of efficient obesity drugs, is the driving force behind much research. Recent Advances: Traditional anti-obesity strategies focused on reducing food intake and increasing physical activity. However, recent results suggest that enhancing cellular energy expenditure may be an attractive alternative therapy. Critical Issues: This review evaluates recent discoveries regarding mitochondrial fatty acid oxidation (FAO) and its potential as a therapy for obesity. We focus on the still controversial beneficial effects of increased FAO in liver and muscle, recent studies on how to potentiate adipose tissue energy expenditure, and the different hypotheses involving FAO and the reactive oxygen species production in the hypothalamic control of food intake. Future Directions: The present review aims to provide an overview of novel anti-obesity strategies that target mitochondrial FAO and that will definitively be of high interest in the future research to fight against obesity-related disorders. Antioxid. Redox Signal. 00, 000000.
Resumo:
Strategies that enhance fat degradation or reduce caloricfood intake could be considered therapeutic interventions to reduce notonly obesity, but also its associated disorders. The enzyme carnitinepalmitoyltransferase 1 (CPT1) is the critical rate-determining regulatorof fatty acid oxidation (FAO) and might play a key role in increasingenergy expenditure and controlling food intake. Our group has shownthat mice overexpressing CPT1 in liver are protected from weight gain,the development of obesity and insulin resistance. Regarding foodintake control, we observed that the pharmacological inhibition ofCPT1 in rat hypothalamus decreased food intake and body weight.This suggests that modulation of CPT1 activity and the oxidation offatty acids in various tissues can be crucial for the potential treatmentof obesity and associated pathologies.
Resumo:
Strategies that enhance fat degradation or reduce caloricfood intake could be considered therapeutic interventions to reduce notonly obesity, but also its associated disorders. The enzyme carnitinepalmitoyltransferase 1 (CPT1) is the critical rate-determining regulatorof fatty acid oxidation (FAO) and might play a key role in increasingenergy expenditure and controlling food intake. Our group has shownthat mice overexpressing CPT1 in liver are protected from weight gain,the development of obesity and insulin resistance. Regarding foodintake control, we observed that the pharmacological inhibition ofCPT1 in rat hypothalamus decreased food intake and body weight.This suggests that modulation of CPT1 activity and the oxidation offatty acids in various tissues can be crucial for the potential treatmentof obesity and associated pathologies.
Resumo:
Significance: Current lifestyles with high-energy diets and little exercise are triggering an alarming growth in obesity. Excess of adiposity is leading to severe increases in associated pathologies, such as insulin resistance, type 2 diabetes, atherosclerosis, cancer, arthritis, asthma, and hypertension. This, together with the lack of efficient obesity drugs, is the driving force behind much research. Recent Advances: Traditional anti-obesity strategies focused on reducing food intake and increasing physical activity. However, recent results suggest that enhancing cellular energy expenditure may be an attractive alternative therapy. Critical Issues: This review evaluates recent discoveries regarding mitochondrial fatty acid oxidation (FAO) and its potential as a therapy for obesity. We focus on the still controversial beneficial effects of increased FAO in liver and muscle, recent studies on how to potentiate adipose tissue energy expenditure, and the different hypotheses involving FAO and the reactive oxygen species production in the hypothalamic control of food intake. Future Directions: The present review aims to provide an overview of novel anti-obesity strategies that target mitochondrial FAO and that will definitively be of high interest in the future research to fight against obesity-related disorders.
Resumo:
The performance of natural extracts obtained from underutilized and residual vegetal and macroalgal biomass processed with food-grade green solvents was compared with that of commercial antioxidants. Selected extracts were obtained from two terrestrial sources: winery byproducts concentrate (WBC) and chestnut burs hydrothermally fractionated extract (CBAE), and from two underutilized seaweeds: Sargassum muticum extracts, either extracted with ethanol (SmEE) or after alginate extraction and hydrothermal fractionation (SmAE) and from Ulva lactuca processed by mild acid extraction and membrane concentration (UlAE). These extracts showed in vitro antioxidant properties comparable to commercial antioxidants and were safe for topical use based on the absence of skin-irritant effects at 0.1% on reconstructed human tissues. The stability of several cosmetic model emulsions was assessed during accelerated oxidation assays. The incorporation of natural extracts produced from renewable underutilized resources at 0.4-0.5% in an oil-in-water emulsions reduced lipid oxidation during storage.
Resumo:
Hemoglobin (Hb) has been proposed to be a major pro-oxidant in raw and cooked meats. To understand the mechanisms and differentiate between the pro-oxidant and antioxidant potential of oxyhemoglobin (OxyHb) and methemoglobin (MetHb), their pro-oxidant activity, protein solubility, radical scavenging capacity, iron content and contribution of non-chelatable iron on lipid oxidation were determined as a function of thermal treatments. The ability of native OxyHb and MetHb to promote lipid oxidation was similar and higher than their corresponding OxyHb or MetHb heated at 68 and 90 degrees C but not different from those at 45 degrees C. The pro-oxidant activity of MetHb heated at 68 and 90 degrees C were similar whereas the pro-oxidant activity of OxyHb heated at 68 degrees C was higher than that heated at 90 degrees C. The decreased pro-oxidant activity of heat-denatured Hb was associated with a decrease in the solubility of heme iron while free iron showed little impact on the lipid oxidation.
Resumo:
Significance: Current lifestyles with high-energy diets and little exercise are triggering an alarming growth in obesity. Excess of adiposity is leading to severe increases in associated pathologies, such as insulin resistance, type 2 diabetes, atherosclerosis, cancer, arthritis, asthma, and hypertension. This, together with the lack of efficient obesity drugs, is the driving force behind much research. Recent Advances: Traditional anti-obesity strategies focused on reducing food intake and increasing physical activity. However, recent results suggest that enhancing cellular energy expenditure may be an attractive alternative therapy. Critical Issues: This review evaluates recent discoveries regarding mitochondrial fatty acid oxidation (FAO) and its potential as a therapy for obesity. We focus on the still controversial beneficial effects of increased FAO in liver and muscle, recent studies on how to potentiate adipose tissue energy expenditure, and the different hypotheses involving FAO and the reactive oxygen species production in the hypothalamic control of food intake. Future Directions: The present review aims to provide an overview of novel anti-obesity strategies that target mitochondrial FAO and that will definitively be of high interest in the future research to fight against obesity-related disorders.
Resumo:
Lipid overload in obesity and type 2 diabetes is associated with adipocyte dysfunction, inflammation, macrophage infiltration, and decreased fatty acid oxidation (FAO). Here, we report that the expression of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme in mitochondrial FAO, is higher in human adipose tissue macrophages than in adipocytes and that it is differentially expressed in visceral vs. subcutaneous adipose tissue in both an obese and a type 2 diabetes cohort. These observations led us to further investigate the potential role of CPT1A in adipocytes and macrophages. We expressed CPT1AM, a permanently active mutant form of CPT1A, in 3T3-L1 CARΔ1 adipocytes and RAW 264.7 macrophages through adenoviral infection. Enhanced FAO in palmitate-incubated adipocytes and macrophages reduced triglyceride content and inflammation, improved insulin sensitivity in adipocytes, and reduced endoplasmic reticulum stress and ROS damage in macrophages. We conclude that increasing FAO in adipocytes and macrophages improves palmitate-induced derangements. This indicates that enhancing FAO in metabolically relevant cells such as adipocytes and macrophages may be a promising strategy for the treatment of chronic inflammatory pathologies such as obesity and type 2 diabetes.
Resumo:
Lipid overload in obesity and type 2 diabetes is associated with adipocyte dysfunction, inflammation, macrophage infiltration, and decreased fatty acid oxidation (FAO). Here, we report that the expression of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme in mitochondrial FAO, is higher in human adipose tissue macrophages than in adipocytes and that it is differentially expressed in visceral vs. subcutaneous adipose tissue in both an obese and a type 2 diabetes cohort. These observations led us to further investigate the potential role of CPT1A in adipocytes and macrophages. We expressed CPT1AM, a permanently active mutant form of CPT1A, in 3T3-L1 CARΔ1 adipocytes and RAW 264.7 macrophages through adenoviral infection. Enhanced FAO in palmitate-incubated adipocytes and macrophages reduced triglyceride content and inflammation, improved insulin sensitivity in adipocytes, and reduced endoplasmic reticulum stress and ROS damage in macrophages. We conclude that increasing FAO in adipocytes and macrophages improves palmitate-induced derangements. This indicates that enhancing FAO in metabolically relevant cells such as adipocytes and macrophages may be a promising strategy for the treatment of chronic inflammatory pathologies such as obesity and type 2 diabetes.
Resumo:
The experience of the European Union is the most significant and far-reaching among all attempts at regional integration. It is, therefore, the most likely to provide some lessons for those world regions that are just beginning this complex process. In turn, the Common Market of the South (MERCOSUR) and the Andean Community (CAN) are among the regional integration projects that have reached the greatest level of formal accomplishment after the EU. MERCOSUR is a customs union that aspires to become a common market, while avowing the commitment to advance towards political integration. For its part, CAN is a customs union that has already developed supranational institutions such as a Commission, a Parliament and a Court of Justice. In both cases, however, words have progressively tended to wander far from deeds. One reason underlying this phenomenon may be a misunderstanding of the European experience with integration. In this article, we discuss the theories that have been developed to account for integration in Europe and may prove useful to understand integration elsewhere and put forward a set of lessons that could be drawn from the European experience. Subsequently, we introduce a description of the experience of integration in South America and reflect (critically) on how the theories and lessons drawn from the EU could be applied to this region –and beyond.
Resumo:
This article analyzes the different perceptions of both male and female potential entrepreneurs from three European regions differing in their respective level of economic development and entrepreneurial culture. We use an extended cognitive model of entrepreneurial intentions based on the theory of planned behaviour, the theory of normative social behaviour and social capital literature. Results show females have lower self-efficacy and entrepreneurial attraction than males, thus leading to lower entrepreneurial intention. Differences between the three subsamples are small when males are studied. However, female entrepreneurial intentions and perceptions are more affected by the cultural context.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."