6 resultados para octahedral polyoxomolybdate
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The synthesis of three bidentate, hemilabile phosphine ligands, newly synthesized in the research group (TPOdiphos, DPPrPOdiphos and SODPdiphos), has been up-scaled and optimized. The ligand substitution reaction on Mo(CO)6 and W(CO)6 has been studied and the corresponding complexes fac-[MTPOdiphos(CO)3], fac-[MDPPrPOdiphos(CO)3], and fac-[MSODPdiphos(CO)3], (M= Mo, W) have been isolated in good yields and characterized by NMR, IR and HR MS. In the case of fac- [MoTPOdiphos(CO)3] the XRD crystal structure was resolved. The complexes were found to be octahedral, neutral molecules, with the metal in the zero oxidation state and the ligand adopting a facial P,P,O-coordination. The hard ligand atom (oxygen) is expected to exhibit special features the future applications of these novel ligands.
Resumo:
The results of a crystal structure refinement of an anisotropic grandite garnet specimen with composition Gro36-4 And63-6 are given. The structure obtained has orthorrombic symmetry (space group Fddd) and is compared with similar results obtained by other authors. In all cases the reduction of symmetry is due to the ordering of Fe3+ and Al in octahedral sites. Non cubic structures of grandites are discussed in connection with optical, morphological an grou-th features of these minerals.
Resumo:
The distribution of Sn4+ cations within the five crystallographic sites of the magnetoplumbite (M) ‐like compound BaFe12−2xCoxSnxO19 has been analyzed using single‐crystal x‐ray‐diffraction data. The species Fe3+ and Co2+ cannot be distinguished using x rays because of their very similar atomic numbers; however, the calculation of the apparent valencies for the different sites allows an insight into the Co2+ cation segregation. The use of previous data from neutron powder diffraction allows a precise picture of the cation distribution, which indicates a pronounced site selectivity for both Sn4+ and Co2+ cations. The Sn4+ cations prefer the 4f2 sites and to a much lower extent the 12k sites, while they do not enter the octahedral 2a sites at all. Co2+ cations are distributed among tetrahedral and octahedral sites displaying a clear preference for the tetrahedral 4f1 sites. Magnetic measurements indicate that the compound still exhibits uniaxial anisotropy with the easy direction parallel to the c axis. Nevertheless, the magnetic structure shows a considerable degree of noncolinearity. A strong reduction of the magnetic anisotropy regarding that of the undoped compound is also detected.
Resumo:
With the aim of a better understanding of both cationic distribution and magnetic properties of the uniaxial SrFe12-xCrxO19hexagonal ferrites, Mössbauer spectroscopy, neutron diffraction and high field magnetization measurements have been carried out. The Cr3+ions occupy the octahedral sites of the M structure with a preference hierarchy within them. The magnetic measurements, together with the deduced cationic distribution, indicate that some sublattices have a random spin canting around the c-axis.
Resumo:
Non crystalline (nc) EuIG and DyIG have been prepared by dc¿sputtering. Mössbauer data on 57Fe, 151Eu and 161Dy reveal sharp magnetic transitions at 62 K and 70 K for nc EuIG and DyIG, respectively. The 57Fe hyperfine (hf) spectra consist of three superpositioned patterns for Fe3+ in tetrahedral and octahedral and for Fe2+ in tetrahedral oxygen coordination. The saturation hf fields at 4.2 K are reduced compared to the values of the corresponding crystalline materials. The induced hf field at 151Eu is only 1/8 of that for crystalline EuIG
Resumo:
The distribution of Sn4+ cations within the five crystallographic sites of the magnetoplumbite (M) ‐like compound BaFe12−2xCoxSnxO19 has been analyzed using single‐crystal x‐ray‐diffraction data. The species Fe3+ and Co2+ cannot be distinguished using x rays because of their very similar atomic numbers; however, the calculation of the apparent valencies for the different sites allows an insight into the Co2+ cation segregation. The use of previous data from neutron powder diffraction allows a precise picture of the cation distribution, which indicates a pronounced site selectivity for both Sn4+ and Co2+ cations. The Sn4+ cations prefer the 4f2 sites and to a much lower extent the 12k sites, while they do not enter the octahedral 2a sites at all. Co2+ cations are distributed among tetrahedral and octahedral sites displaying a clear preference for the tetrahedral 4f1 sites. Magnetic measurements indicate that the compound still exhibits uniaxial anisotropy with the easy direction parallel to the c axis. Nevertheless, the magnetic structure shows a considerable degree of noncolinearity. A strong reduction of the magnetic anisotropy regarding that of the undoped compound is also detected.