9 resultados para oblique astigmatism
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The coupling between topography, waves and currents in the surf zone may selforganize to produce the formation of shore-transverse or shore-oblique sand bars on an otherwise alongshore uniform beach. In the absence of shore-parallel bars, this has been shown by previous studies of linear stability analysis, but is now extended to the finite-amplitude regime. To this end, a nonlinear model coupling wave transformation and breaking, a shallow-water equations solver, sediment transport and bed updating is developed. The sediment flux consists of a stirring factor multiplied by the depthaveraged current plus a downslope correction. It is found that the cross-shore profile of the ratio of stirring factor to water depth together with the wave incidence angle primarily determine the shape and the type of bars, either transverse or oblique to the shore. In the latter case, they can open an acute angle against the current (upcurrent oriented) or with the current (down-current oriented). At the initial stages of development, both the intensity of the instability which is responsible for the formation of the bars and the damping due to downslope transport grow at a similar rate with bar amplitude, the former being somewhat stronger. As bars keep on growing, their finite-amplitude shape either enhances downslope transport or weakens the instability mechanism so that an equilibrium between both opposing tendencies occurs, leading to a final saturated amplitude. The overall shape of the saturated bars in plan view is similar to that of the small-amplitude ones. However, the final spacings may be up to a factor of 2 larger and final celerities can also be about a factor of 2 smaller or larger. In the case of alongshore migrating bars, the asymmetry of the longshore sections, the lee being steeper than the stoss, is well reproduced. Complex dynamics with merging and splitting of individual bars sometimes occur. Finally, in the case of shore-normal incidence the rip currents in the troughs between the bars are jet-like while the onshore return flow is wider and weaker as is observed in nature.
Resumo:
The two independent components of the gyration tensor of quartz, g11 and g33, have been spectroscopically measured using a transmission two-modulator generalized ellipsometer. The method is used to determine the optical activity in crystals in directions other than the optic axis, where the linear birefringence is much larger than the optical activity.
Resumo:
Report for the scientific sojourn carried out at the Uppsala Universitet, Sweden, from April to July the 2007. Two series of analogue models are used to explore ductile-frictional contrasts of the basal décollement in the development of oblique and transverse structures simultaneously to thin-skinned shortening. These models simulate the evolution of the Central External Sierras (Southern Pyrenees, Spain), which constitute the frontal emerging part of the southernmost Pyrenean thrust sheet. They are characterized by the presence of transverse N-S to NW-SE anticlines, which are perpendicular to the Pyrenean structural trend and developed in the hangingwall of the Santo Domingo thrust system, detaching on an unevenly distributed Triassic materials (evaporitic-dolomitic interfingerings). Model setup performs a décollement made by three patches of silicone neighbouring pure brittle sand. Model series A test the thickness ratio between overburden and décollement. Model series B test the width of frictional detachment areas. Model results show how deformation reaches further in areas detached on ductile layer whereas frictional décollement areas assimilate the strain by means of an additional uplift. This replicates the structural style of Central External Sierras: higher structural relief of N-S anticlines with regard to orogen-parallel structures, absence of a representative ductile décollement in the core, tilting towards the orogen and foreland-side closure not thrusted by the frontal emerging South-Pyrenean thrust.
Resumo:
A study of the spermiogenesis and spermatozoa of Helicolenus dactylopterus was conducted. Females of this species have the capacity to store sperm within their ovaries, and male gametes have a considerable cytoplasmic mass surrounding their heads to survive the long period of intraovarian sperm storage. Our observations show that early spermatids are round-shaped cells and have a spherical nucleus with diffuse chromatin. The nuclear volume decreases as a result of progressive chromatin condensation during spermiogenesis, causing the nucleus to take on a U-shape. Flagellar insertion is not central to the nucleus but consistently occurs at an oblique angle towards one side of it. The flagellum is inserted into the nuclear fossa, without subsequent nuclear rotation. In mature spermatozoa, the flagellum is adjacent to the nucleus. A comparison of the spermatozoa in the testicular lobules and those in the intraovarian storage structures suggests that the increase in volume of the cytoplasmic mass may occur in the posterior region of the testis, in the testicular duct. Spermatozoa enter the ovary in groups that reach the ovarian lumen and are surrounded by the ovarian epithelium for storage in sperm storage crypts
Resumo:
We consider the two Higgs doublet model extension of the standard model in the limit where all physical scalar particles are very heavy, too heavy, in fact, to be experimentally produced in forthcoming experiments. The symmetry-breaking sector can thus be described by an effective chiral Lagrangian. We obtain the values of the coefficients of the O(p4) operators relevant to the oblique corrections and investigate to what extent some nondecoupling effects may remain at low energies. A comparison with recent CERN LEP data shows that this model is indistinguishable from the standard model with one doublet and with a heavy Higgs boson, unless the scalar mass splittings are large.
Resumo:
We discuss the dynamics of the transient pattern formation process corresponding to the splay Fréedericksz transition. The emergence and subsequent evolution of the spatial periodicity is here described in terms of the temporal dependence of the wave numbers corresponding to the maxima of the structure factor. Situations of perpendicular as well as oblique field-induced stripes relative to the initial orientation of the director are both examined with explicit indications of the time scales needed for their appearance and posterior development.
Resumo:
Shoreline undulations extending into the bathymetric contours with a length scale larger than that of the rhythmic surf zone bars are referred to as shoreline sand waves. Many observed undulations along sandy coasts display a wavelength in the order 1-7 km. Several models that are based on the hypothesis that sand waves emerge from a morphodynamic instability in case of very oblique wave incidence predict this range of wavelengths. Here we investigate the physical reasons for the wavelength selection and the main parametric trends of the wavelength in case of sand waves arising from such instability. It is shown that the existence of a minimum wavelength depends on an interplay between three factors affecting littoral drift: (A) the angle of wave fronts relative to local shoreline, which tends to cause maximum transport at the downdrift flank of the sand wave, (B) the refractive energy spreading which tends to cause maximum transport at the updrift flank and (C) wave focusing (de-focusing) by the capes (bays), which tends to cause maximum transport at the crest or slightly downdrift of it. Processes A and C cause decay of the sand waves while process B causes their growth. For low incidence angles, B is very weak so that a rectilinear shoreline is stable. For large angles and long sand waves, B is dominant and causes the growth of sand waves. For large angles and short sand waves C is dominant and the sand waves decay. Thus, wavelength selection depends on process C, which essentially depends on shoreline curvature. The growth rate of very long sand waves is weak because the alongshore gradients in sediment transport decrease with the wavelength. This is why there is an optimum or dominant wavelength. It is found that sand wave wavelength scales with λ0/β where λ0 is the water wave wavelength in deep water and β is the mean bed slope from shore to the wave base.
Resumo:
The Alhama de Murcia fault is a 85 km long oblique-slip fault, and is related to historical and instrumental seismic activity. A paleoseismic analysis of the Lorca-Totana sector of the fault containing MSK I=VIII historical earthquakes was made in order to identify and quantify its seismic potential. We present 1) the results of the neotectonic, structural and geomorphological analyses and, 2) the results of trenching. In the study area, the Alhama de Murcia fault forms a depressed corridor between two strands, the northwestern fault with morphological and structural features of a reverse component of slip, bounding the La Tercia range to the South, and the southeastern fault strand with evidence of sinistral oblique strike-slip movement. The offset along this latter fault trapped the sediments in transit from the La Tercia range towards the Guadalentín depression. The most recent of these sediments are arranged in three generations of alluvial fans and terraces. The first two trenches were dug in the most recent sediments across the southeastern fault strand. The results indicate a coseismic reverse fault deformation that involved the sedimentary sequence up to the intermediate alluvial fan and the Holocene terrace deposits. The sedimentary evolution observed in the trenches suggests an event of temporary damming of the Colmenar creek drainage to the South due to uplifting of the hanging wall during coseismic activation of the fault. Trench, structural and sedimentological features provide evidence of at least three coseismic events, which occurred after 125,000 yr. The minimum vertical slip rate along the fault is 0.06 mm/yr and the average recurrence period should not exceed 40,000 yr in accordance with the results obtained by fan topographic profiling. Further absolute dating is ongoing to constrain these estimates.
Resumo:
Language switching is omnipresent in bilingual individuals. In fact, the ability to switch languages (code switching) is a very fast, efficient, and flexible process that seems to be a fundamental aspect of bilingual language processing. In this study, we aimed to characterize psychometrically self-perceived individual differences in language switching and to create a reliable measure of this behavioral pattern by introducing a bilingual switching questionnaire. As a working hypothesis based on the previous literature about code switching, we decomposed language switching into four constructs: (i) L1 switching tendencies (the tendency to switch to L1; L1-switch); (ii) L2 switching tendencies (L2-switch); (iii) contextual switch, which indexes the frequency of switches usually triggered by a particular situation, topic, or environment; and (iv) unintended switch, which measures the lack of intention and awareness of the language switches. A total of 582 SpanishCatalan bilingual university students were studied. Twelve items were selected (three for each construct). The correlation matrix was factor-analyzed using minimum rank factor analysis followed by oblique direct oblimin rotation. The overall proportion of common variance explained by the four extracted factors was 0.86. Finally, to assess the external validity of the individual differences scored with the new questionnaire, we evaluated the correlations between these measures and several psychometric (language proficiency) and behavioral measures related to cognitive and attentional control. The present study highlights the importance of evaluating individual differences in language switching using self-assessment instruments when studying the interface between cognitive control and bilingualism.