19 resultados para nonmajor histocompatibility complex gene

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Cells have the ability to respond and adapt to environmental changes through activation of stress-activated protein kinases (SAPKs). Although p38 SAPK signalling is known to participate in the regulation of gene expression little is known on the molecular mechanisms used by this SAPK to regulate stress-responsive genes and the overall set of genes regulated by p38 in response to different stimuli.Results: Here, we report a whole genome expression analyses on mouse embryonic fibroblasts (MEFs) treated with three different p38 SAPK activating-stimuli, namely osmostress, the cytokine TNFα and the protein synthesis inhibitor anisomycin. We have found that the activation kinetics of p38α SAPK in response to these insults is different and also leads to a complex gene pattern response specific for a given stress with a restricted set of overlapping genes. In addition, we have analysed the contribution of p38α the major p38 family member present in MEFs, to the overall stress-induced transcriptional response by using both a chemical inhibitor (SB203580) and p38α deficient (p38α-/-) MEFs. We show here that p38 SAPK dependency ranged between 60% and 88% depending on the treatments and that there is a very good overlap between the inhibitor treatment and the ko cells. Furthermore, we have found that the dependency of SAPK varies depending on the time the cells are subjected to osmostress. Conclusions: Our genome-wide transcriptional analyses shows a selective response to specific stimuli and a restricted common response of up to 20% of the stress up-regulated early genes that involves an important set of transcription factors, which might be critical for either cell adaptation or preparation for continuous extra-cellular changes. Interestingly, up to 85% of the up-regulated genes are under the transcriptional control of p38 SAPK. Thus, activation of p38 SAPK is critical to elicit the early gene expression program required for cell adaptation to stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La consecución de tolerancia aloespecífica es de mucha relevancia en trasplante. Las células dendríticas (DC) son las principales responsables de la inducción de la respuesta inmune frente a las moléculas de histocompatibilidad (MHC) del donante, provocando el rechazo del injerto. Sin embargo las DC son también responsables de la inducción de tolerancia. Diversos modelos animales de alotrasplante han mostrado la tolerización del injerto mediante DC diferenciadas in vitro en condiciones tolerogénicas (tDC). En humanos, las fuentes de aloantígenos potencialmente utilizables en terapia son, entre otras, los cuerpos apoptóticos y los exosomas. Éstos expresan antígenos MHC de forma abundante y su composición es relativamente uniforme, lo que supone una ventaja frente a otras fuentes. En este proyecto, se ha evaluado la obtención de exosomas secretados por una línea de linfocitos T y por células dendríticas derivadas de médula ósea. Se ha caracterizado la captura de exosomas derivados de linfocitos T por células dendríticas humanas derivadas de sangre periférica y su presentación a linfocitos T autólogos. Por otra parte, se ha comenzado a desarrollar los experimentos para estudiar la inducción de tolerancia en un modelo de trasplante renal en rata. Se han generado células dendríticas tolerógenicas derivadas de médula ósea (tolDC), en presencia de dexametasona. Las tolDC expresan menos moléculas de histocompatibilidad y de coestimulación e inducen una menor proliferación en reacciones mixtas leucocitaras, comparadas con las células dendríticas maduras. Por último, se han caracterizado los exosomas de plasma humano con el fin de estudiar su posible uso como aloantígenos. El análisis proteómico revela la presencia de proteínas relacionadas con el sistema inmune, la coagulación, la señalización celular y moléculas implicadas en el transporte y metabolismo de nutrientes. El estudio de la captura por diferentes líneas celulares sugiere que deben existir mecanismos específicos para su internalización.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

AbstractBACKGROUND: Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult.PRINCIPAL FINDINGS: We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell.CONCLUSIONS: For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and environmental factors, such as drugs, contribute to diseases.AVAILABILITY: The gene-disease networks used in this study and part of the analysis are available at http://ibi.imim.es/DisGeNET/DisGeNETweb.html#Download

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mechanisms underlying speciation in plants include detrimental (incompatible) genetic interactions between parental alleles that incur a fitness cost in hybrids. We reported on recessive hybrid incompatibility between an Arabidopsis thaliana strain from Poland, Landsberg erecta (Ler), and many Central Asian A. thaliana strains. The incompatible interaction is determined by a polymorphic cluster of Toll/interleukin-1 receptor-nucleotide binding-leucine rich repeat (TNL) RPP1 (Recognition of Peronospora parasitica1)-like genes in Ler and alleles of the receptor-like kinase Strubbelig Receptor Family 3 (SRF3) in Central Asian strains Kas-2 or Kond, causing temperature-dependent autoimmunity and loss of growth and reproductive fitness. Here, we genetically dissected the RPP1-like Ler locus to determine contributions of individual RPP1-like Ler (R1R8) genes to the incompatibility. In a neutral background, expression of most RPP1-like Ler genes, except R3, has no effect on growth or pathogen resistance. Incompatibility involves increased R3 expression and engineered R3 overexpression in a neutral background induces dwarfism and sterility. However, no individual RPP1-like Ler gene is sufficient for incompatibility between Ler and Kas-2 or Kond, suggesting that co-action of at least two RPP1-like members underlies this epistatic interaction. We find that the RPP1-like Ler haplotype is frequent and occurs with other Ler RPP1-like alleles in a local population in Gorzów Wielkopolski (Poland). Only Gorzów individuals carrying the RPP1-like Ler haplotype are incompatible with Kas-2 and Kond, whereas other RPP1-like alleles in the population are compatible. Therefore, the RPP1-like Ler haplotype has been maintained in genetically different individuals at a single site, allowing exploration of forces shaping the evolution of RPP1-like genes at local and regional population scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genomic plasticity of human chromosome 8p23.1 region is highly influenced by two groups of complex segmental duplications (SDs), termed REPD and REPP, that mediate different kinds of rearrangements. Part of the difficulty to explain the wide range of phenotypes associated with 8p23.1 rearrangements is that REPP and REPD are not yet well characterized, probably due to their polymorphic status. Here, we describe a novel primate-specific gene family, named FAM90A (family with sequence similarity 90), found within these SDs. According to the current human reference sequence assembly, the FAM90A family includes 24 members along 8p23.1 region plus a single member on chromosome 12p13.31, showing copy number variation (CNV) between individuals. These genes can be classified into subfamilies I and II, which differ in their upstream and 5′-untranslated region sequences, but both share the same open reading frame and are ubiquitously expressed. Sequence analysis and comparative fluorescence in situ hybridization studies showed that FAM90A subfamily II suffered a big expansion in the hominoid lineage, whereas subfamily I members were likely generated sometime around the divergence of orangutan and African great apes by a fusion process. In addition, the analysis of the Ka/Ks ratios provides evidence of functional constraint of some FAM90A genes in all species. The characterization of the FAM90A gene family contributes to a better understanding of the structural polymorphism of the human 8p23.1 region and constitutes a good example of how SDs, CNVs and rearrangements within themselves can promote the formation of new gene sequences with potential functional consequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immunity-related GTPases (IRG) play an important role in defense against intracellular pathogens. One member of this gene family in humans, IRGM, has been recently implicated as a risk factor for Crohn's disease. We analyzed the detailed structure of this gene family among primates and showed that most of the IRG gene cluster was deleted early in primate evolution, after the divergence of the anthropoids from prosimians ( about 50 million years ago). Comparative sequence analysis of New World and Old World monkey species shows that the single-copy IRGM gene became pseudogenized as a result of an Alu retrotransposition event in the anthropoid common ancestor that disrupted the open reading frame (ORF). We find that the ORF was reestablished as a part of a polymorphic stop codon in the common ancestor of humans and great apes. Expression analysis suggests that this change occurred in conjunction with the insertion of an endogenous retrovirus, which altered the transcription initiation, splicing, and expression profile of IRGM. These data argue that the gene became pseudogenized and was then resurrected through a series of complex structural events and suggest remarkable functional plasticity where alleles experience diverse evolutionary pressures over time. Such dynamism in structure and evolution may be critical for a gene family locked in an arms race with an ever-changing repertoire of intracellular parasites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genes of interest can be targeted specifically to respiratory epithelial cells in intact animals with high efficiency by exploiting the receptor-mediated endocytosis of the polymeric immunoglobulin receptor. A DNA carrier, consisting of the Fab portion of polyclonal antibodies raised against rat secretory component covalently linked to poly-L-lysine, was used to introduce plasmids containing different reporter genes into airway epithelial cells in vivo. We observed significant levels of luciferase enzyme activity in protein extracts from the liver and lung, achieving maximum values of 13,795 +/- 4,431 and 346,954 +/- 199,120 integrated light units (ILU) per milligram of protein extract, respectively. No luciferase activity was detected in spleen or heart, which do not express the receptor. Transfections using complexes consisting of an irrelevant plasmid (pCMV lacZ) bound to the bona fide carrier or the expression plasmid (pGEMluc) bound to a carrier based on an irrelevant Fab fragment resulted in background levels of luciferase activity in all tissues examined. Thus, only tissues that contain cells bearing the polymeric immunoglobulin receptor are transfected, and transfection cannot be attributed to the nonspecific uptake of an irrelevant carrier-DNA complex. Specific mRNA from the luciferase gene was also detected in the lungs of transfected animals. To determine which cells in the lungs are transfected by this method, DNA complexes were prepared containing expression plasmids with genes encoding the bacterial beta-galactosidase or the human interleukin 2 receptor. Expression of these genes was localized to the surface epithelium of the airways and the submucosal glands, and not the bronchioles and alveoli. Receptor-mediated endocytosis can be used to introduce functional genes into the respiratory epithelium of rats, and may be a useful technique for gene therapy targeting the lung.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compared specimens of Tripterygion tripteronotus from 52 localities of the Mediterranean Sea and adjacent waters, using four gene sequences (12S rRNA, tRNA-valine, 16S rRNA and COI) and morphological characters. Two well-differentiated clades with a mean genetic divergence of 6.89±0.73% were found with molecular data, indicating the existence of two different species. These two species have disjunctive geographic distribution areas without any molecular hybrid populations. Subtle but diagnostic morphological differences were also present between the two species. T. tripteronotus is restricted to the northern Mediterranean basin, from the NE coast of Spain to Greece and Turkey, including the islands of Malta and Cyprus. T. tartessicum n. sp. is geographically distributed along the southern coast of Spain, from Cape of La Nao to the Gulf of Cadiz, the Balearic Islands and northern Africa, from Morocco to Tunisia. According to molecular data, these two species could have diverged during the Pliocene glaciations 2.7-3.6 Mya.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Despite its pervasiveness, the genetic basis of adaptation resulting in variation directly or indirectly related to temperature (climatic) gradients is poorly understood. By using 3-fold replicated laboratory thermal stocks covering much of the physiologically tolerable temperature range for the temperate (i.e., cold tolerant) species Drosophila subobscura we have assessed whole-genome transcriptional responses after three years of thermal adaptation, when the populations had already diverged for inversion frequencies, pre-adult life history components, and morphological traits. Total mRNA from each population was compared to a reference pool mRNA in a standard, highly replicated two-colour competitive hybridization experiment using cDNA microarrays.Results: A total of 306 (6.6%) cDNA clones were identified as 'differentially expressed' (following a false discovery rate correction) after contrasting the two furthest apart thermal selection regimes (i.e., 13°C vs . 22°C), also including four previously reported candidate genes for thermotolerance in Drosophila (Hsp26, Hsp68, Fst, and Treh). On the other hand, correlated patterns of gene expression were similar in cold- and warm-adapted populations. Analysis of functional categories defined by the Gene Ontology project point to an overrepresentation of genes involved in carbohydrate metabolism, nucleic acids metabolism and regulation of transcription among other categories. Although the location of differently expressed genes was approximately at random with respect to chromosomes, a physical mapping of 88 probes to the polytene chromosomes of D. subobscura has shown that a larger than expected number mapped inside inverted chromosomal segments.Conclusion: Our data suggest that a sizeable number of genes appear to be involved in thermal adaptation in Drosophila, with a substantial fraction implicated in metabolism. This apparently illustrates the formidable challenge to understanding the adaptive evolution of complex trait variation. Furthermore, some clustering of genes within inverted chromosomal sections was detected. Disentangling the effects of inversions will be obviously required in any future approach if we want to identify the relevant candidate genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background: Many complex systems can be represented and analysed as networks. The recent availability of large-scale datasets, has made it possible to elucidate some of the organisational principles and rules that govern their function, robustness and evolution. However, one of the main limitations in using protein-protein interactions for function prediction is the availability of interaction data, especially for Mollicutes. If we could harness predicted interactions, such as those from a Protein-Protein Association Networks (PPAN), combining several protein-protein network function-inference methods with semantic similarity calculations, the use of protein-protein interactions for functional inference in this species would become more potentially useful. Results: In this work we show that using PPAN data combined with other approximations, such as functional module detection, orthology exploitation methods and Gene Ontology (GO)-based information measures helps to predict protein function in Mycoplasma genitalium. Conclusions: To our knowledge, the proposed method is the first that combines functional module detection among species, exploiting an orthology procedure and using information theory-based GO semantic similarity in PPAN of the Mycoplasma species. The results of an evaluation show a higher recall than previously reported methods that focused on only one organism network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between inflammation and cancer is well established in several tumor types, including bladder cancer. We performed an association study between 886 inflammatory-gene variants and bladder cancer risk in 1,047 cases and 988 controls from the Spanish Bladder Cancer (SBC)/EPICURO Study. A preliminary exploration with the widely used univariate logistic regression approach did not identify any significant SNP after correcting for multiple testing. We further applied two more comprehensive methods to capture the complexity of bladder cancer genetic susceptibility: Bayesian Threshold LASSO (BTL), a regularized regression method, and AUC-Random Forest, a machine-learning algorithm. Both approaches explore the joint effect of markers. BTL analysis identified a signature of 37 SNPs in 34 genes showing an association with bladder cancer. AUC-RF detected an optimal predictive subset of 56 SNPs. 13 SNPs were identified by both methods in the total population. Using resources from the Texas Bladder Cancer study we were able to replicate 30% of the SNPs assessed. The associations between inflammatory SNPs and bladder cancer were reexamined among non-smokers to eliminate the effect of tobacco, one of the strongest and most prevalent environmental risk factor for this tumor. A 9 SNP-signature was detected by BTL. Here we report, for the first time, a set of SNP in inflammatory genes jointly associated with bladder cancer risk. These results highlight the importance of the complex structure of genetic susceptibility associated with cancer risk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

miR-21 is the most commonly over-expressed microRNA (miRNA) in cancer and a proven oncogene. Hsa-miR-21 is located on chromosome 17q23.2, immediately downstream of the vacuole membrane protein-1 (VMP1) gene, also known as TMEM49. VMP1 transcripts initiate ∼130 kb upstream of miR-21, are spliced, and polyadenylated only a few hundred base pairs upstream of the miR-21 hairpin. On the other hand, primary miR-21 transcripts (pri-miR-21) originate within the last introns of VMP1, but bypass VMP1 polyadenylation signals to include the miR-21 hairpin. Here, we report that VMP1 transcripts can also bypass these polyadenylation signals to include miR-21, thus providing a novel and independently regulated source of miR-21, termed VMP1–miR-21. Northern blotting, gene-specific RT-PCR, RNA pull-down and DNA branching assays support that VMP1–miR-21 is expressed at significant levels in a number of cancer cell lines and that it is processed by the Microprocessor complex to produce mature miR-21. VMP1 and pri-miR-21 are induced by common stimuli, such as phorbol-12-myristate-13-acetate (PMA) and androgens, but show differential responses to some stimuli such as epigenetic modifying agents. Collectively, these results indicate that miR-21 is a unique miRNA capable of being regulated by alternative polyadenylation and two independent gene promoters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed an activator/repressor expression system for budding yeast in which tetracyclines control in opposite ways the ability of tetR-based activator and repressor molecules to bind tetO promoters. This combination allows tight expression of tetO-driven genes, both in a direct (tetracycline-repressible) and reverse (tetracycline-inducible) dual system. Ssn6 and Tup1, that are components of a general repressor complex in yeast, have been tested for their repressing properties in the dual system, using lacZ and CLN2 as reporter genes. Ssn6 gives better results and allows complete switching-off of the regulated genes, although increasing the levels of the Tup1-based repressor by expressing it from a stronger promoter improves repressing efficiency of the latter. Effector-mediated shifts between expression and non-expression conditions are rapid. The dual system here described may be useful for the functional analysis of essential genes whose conditional expression can be tightly controlled by tetracyclines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Hyperhomocysteinemia and methylenetetrahydrofolate reductase (MTHFR) gene mutation have been postulated as a possible cause of recurrent miscarriage (RM). There is a wide variation in the prevalence of MTHFR polymorphisms and homocysteine (Hcy) plasma levels among populations around the world. The present study was undertaken to investigate the possible association between hyperhomocysteinemia and its causative genetic or acquired factors and RM in Catalonia, a Mediterranean region in Spain. Methods: Sixty consecutive patients with ≥ 3 unexplained RM and 30 healthy control women having at least one child but no previous miscarriage were included. Plasma Hcy levels, MTHFR gene mutation, red blood cell (RBC) folate and vitamin B12 serum levels were measured in all subjects. Results: No significant differences were observed neither in plasma Hcy levels, RBC folate and vitamin B12 serum levels nor in the prevalence of homozygous and heterozygous MTHFR gene mutation between the two groups studied. Conclusions: In the present study RM is not associated with hyperhomocysteinemia, and/or the MTHFR gene mutation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sardinia is the second largest island in the Mediterranean and, together with Corsica and nearby mainland areas, one of the top biodiversity hotspots in the region. The origin of Sardinia traces back to the opening of the western Mediterranean in the late Oligocene. This geological event and the subsequent Messinian Salinity Crisis and Pleistocene glacial cycles have had a major impact on local biodiversity. The Dysdera woodlouse hunter spiders are one of the most diverse ground-dweller groups in the Mediterranean. Here we describe the first two species of this genus endemic to Sardinia: Dysdera jana sp. n. and Dysdera shardana sp. n. The two species show contrasting allopatric distribution: D. jana sp. n. is a narrow endemic while D. shardana sp. n. is distributed throughout most of the island. A multi-gene DNA sequence phylogenetic analys based on mitochondrial and nuclear genes supports the close relationships of the new species to the type species of the genus Dysdera erythrina. Age estimates reject Oligocene origin of the new Dysdera species and identify the Messinian Salinity Crises as the most plausible period for the split between Sardinian endemics and their closest relatives. Phylogeographic analysis reveals deep genetic divergences and population structure in Dysdera shardana sp. n., suggesting that restriction to gene flow probably due to environmental factors could explain local speciation events. Taxonomy, phylogeny, DNA sequencing, Mediterranean biogeography, phylogeography