19 resultados para non-thermal technologies

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context.LS 5039 has been observed with several X-ray instruments so far showing quite steady emission in the long term and no signatures of accretion disk. The source also presents X-ray variability at orbital timescales in flux and photon index. The system harbors an O-type main sequence star with moderate mass-loss. At present, the link between the X-rays and the stellar wind is unclear. Aims.We study the X-ray fluxes, spectra, and absorption properties of LS 5039 at apastron and periastron passages during an epoch of enhanced stellar mass-loss, and the long term evolution of the latter in connection with the X-ray fluxes. Methods.New XMM-Newton observations were performed around periastron and apastron passages in September 2005, when the stellar wind activity was apparently higher. April 2005 Chandra observations on LS 5039 were revisited. Moreover, a compilation of H EW data obtained since 1992, from which the stellar mass-loss evolution can be approximately inferred, was carried out. Results.XMM-Newton observations show higher and harder emission around apastron than around periastron. No signatures of thermal emission or a reflection iron line indicating the presence of an accretion disk are found in the spectrum, and the hydrogen column density () is compatible with being the same in both observations and consistent with the interstellar value. 2005 Chandra observations show a hard X-ray spectrum, and possibly high fluxes, although pileup effects preclude conclusive results from being obtained. The H EW shows yearly variations of 10%, and does not seem to be correlated with X-ray fluxes obtained at similar phases, unlike what is expected in the wind accretion scenario. Conclusions.2005 XMM-Newton and Chandra observations are consistent with 2003 RXTE/PCA results, namely moderate flux and spectral variability at different orbital phases. The constancy of the seems to imply that either the X-ray emitter is located at 1012 cm from the compact object, or the density in the system is 3 to 27 times smaller than that predicted by a spherical symmetric wind model. We suggest that the multiwavelength non-thermal emission of LS 5039 is related to the observed extended radio jets and is unlikely to be produced inside the binary system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, massive protostars have turned out to be a possible population of high-energy emitters. Among the best candidates is IRAS 16547-4247, a protostar that presents a powerful outflow with clear signatures of interaction with its environment. This source has been revealed to be a potential high-energy source because it displays non-thermal radio emission of synchrotron origin, which is evidence of relativistic particles. To improve our understanding of IRAS 16547-4247 as a high-energy source, we analyzed XMM-Newton archival data and found that IRAS 16547-4247 is a hard X-ray source. We discuss these results in the context of a refined one-zone model and previous radio observations. From our study we find that it may be difficult to explain the X-ray emission as non-thermal radiation coming from the interaction region, but it might be produced by thermal Bremsstrahlung (plus photo-electric absorption) by a fast shock at the jet end. In the high-energy range, the source might be detectable by the present generation of Cherenkov telescopes, and may eventually be detected by Fermi in the GeV range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context. The interaction of microquasar jets with their environment can produce non-thermal radiation as in the case of extragalactic outflows impacting on their surroundings. Significant observational evidence of jet/medium interaction in galactic microquasars has been collected in the past few years, although little theoretical work has been done regarding the resulting non-thermal emission. Aims. In this work, we investigate the non-thermal emission produced in the interaction between microquasar jets and their environment, and the physical conditions for its production. Methods. We developed an analytical model based on those successfully applied to extragalactic sources. The jet is taken to be a supersonic and mildly relativistic hydrodynamical outflow. We focus on the jet/shocked medium structure in its adiabatic phase, and assume that it grows in a self-similar way. We calculate the fluxes and spectra of the radiation produced via synchrotron, inverse Compton, and relativistic bremsstrahlung processes by electrons accelerated in strong shocks. A hydrodynamical simulation is also performed to investigate further the jet interaction with the environment and check the physical parameters used in the analytical model. Results. For reasonable values of the magnetic field, and using typical values of the external matter density, the non-thermal particles could produce significant amounts of radiation at different wavelengths, although they do not cool primarily radiatively, but by adiabatic losses. The physical conditions of the analytical jet/medium interaction model are consistent with those found in the hydrodynamical simulation. Conclusions. Microquasar jet termination regions could be detectable at radio wavelengths for current instruments sensitive to ~arcminute scales. At X-ray energies, the expected luminosities are moderate, although the emitter is more compact than the radio one. The source may be detectable by XMM-Newton or Chandra, with 1-10 arcsec of angular resolution. The radiation at gamma-ray energies may be within the detection limits of the next generation of satellite and ground-based instruments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dans certains pays européens, les produits carnés élaborés peuvent représenter près de 20% de la consommation journalière de sodium. De ce fait, les industries de la viande tentent de réduire la teneur en sel dans les produits carnés pour répondre, d’une part aux attentes des consommateurs et d’autre part aux demandes des autorités sanitaires. Le système Quick‐Dry‐Slice process (QDS®), couplé avec l’utilisation de sels substituant le chlorure de sodium (NaCl), a permis de fabriquer, avec succès, des saucisses fermentées à basse teneur en sel en réduisant le cycle de fabrication et sans ajout de NaCl supplémentaire. Les technologies de mesure en ligne non destructives, comme les rayons X et l’induction électromagnétique, permettent de classifier les jambons frais suivant leur teneur en gras, un paramètre crucial pour adapter la durée de l’étape de salaison. La technologie des rayons X peut aussi être utilisée pour estimer la quantité de sel incorporée pendant la salaison. L’information relative aux teneurs en sel et en gras est importante pour optimiser le processus d’élaboration du jambon sec en réduisant la variabilité de la teneur en sel entre les lots et dans un même lot, mais aussi pour réduire la teneur en sel du produit final. D’autres technologies comme la spectroscopie en proche infrarouge (NIRS) ou spectroscopie microondes sont aussi utiles pour contrôler le processus d’élaboration et pour caractériser et classifier les produits carnés élaborés, selon leur teneur en sel. La plupart de ces technologies peuvent être facilement appliquées en ligne dans l’industrie afin de contrôler le processus de fabrication et d’obtenir ainsi des produits carnés présentant les caractéristiques recherchées.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aims.We revisit the vicinity of the microquasar Cygnus X-3 at radio wavelengths. We aim to improve our previous search for possible associated extended radio features/hot spots in the position angle of the Cygnus X-3 relativistic jets focusing on shorter angular scales than previously explored. Methods.Our work is mostly based on analyzing modern survey and archive radio data, mainly including observations carried out with the Very Large Array and the Ryle Telescopes. We also used deep near-infrared images that we obtained in 2005. Results.We present new radio maps of the Cygnus X-3 field computed after combining multi-configuration Very Large Array archive data at 6 cm and different observing runs at 2 cm with the Ryle Telescope. These are probably among the deepest radio images of Cygnus X-3 reported to date at cm wavelengths. Both interferometers reveal an extended radio feature within a few arc-minutes of the microquasar position, thus making our detection more credible. Moreover, this extended emission is possibly non-thermal, although this point still needs confirmation. Its physical connection with the microquasar is tentatively considered under different physical scenarios. We also report on the serendipitous discovery of a likely Fanaroff-Riley type II radio galaxy only away from Cygnus X-3.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The modern generation of Cherenkov telescopes has revealed a new population of gamma-ray sources in the Galaxy. Some of them have been identified with previously known X-ray binary systems while other remain without clear counterparts a lower energies. Our initial goal here was reporting on extensive radio observations of the first extended and yet unidentified source, namely TeV J2032+4130. This object was originally detected by the HEGRA telescope in the direction of the Cygnus OB2 region and its nature has been a matter of debate during the latest years. The situation has become more complex with the Whipple and MILAGRO telescopes new TeV detections in the same field which could be consistent with the historic HEGRA source, although a different origin cannot be ruled out. Aims.We aim to pursue our radio exploration of the TeV J2032+4130 position that we initiated in a previous paper but taking now into account the latest results from new Whipple and MILAGRO TeV telescopes. The data presented here are an extended follow up of our previous work. Methods.Our investigation is mostly based on interferometric radio observations with the Giant Metre Wave Radio Telescope (GMRT) close to Pune (India) and the Very Large Array (VLA) in New Mexico (USA). We also conducted near infrared observations with the 3.5 m telescope and the OMEGA2000 camera at the Centro Astronómico Hispano Alemán (CAHA) in Almería (Spain). Results.We present deep radio maps centered on the TeV J2032+4130 position at different wavelengths. In particular, our 49 and 20 cm maps cover a field of view larger than half a degree that fully includes the Whipple position and the peak of MILAGRO emission. Our most important result here is a catalogue of 153 radio sources detected at 49 cm within the GMRT antennae primary beam with a full width half maximum (FWHM) of 43 arc-minute. Among them, peculiar sources inside the Whipple error ellipse are discussed in detail, including a likely double-double radio galaxy and a one-sided jet source of possible blazar nature. This last object adds another alternative counterpart possibility to be considered for both the HEGRA, Whipple and MILAGRO emission. Moreover, our multi-configuration VLA images reveal the non-thermal extended emission previously reported by us with improved angular resolution. Its non-thermal spectral index is also confirmed thanks to matching beam observations at the 20 and 6 cm wavelengths.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Context. There are a number of very high energy sources in the Galaxy that remain unidentified. Multi-wavelength and variability studies, and catalogue searches, are powerful tools to identify the physical counterpart, given the uncertainty in the source location and extension. Aims. This work carries out a thorough multi-wavelength study of the unidentified, very high energy source HESS J1858+020 and its environs. Methods. We have performed Giant Metrewave Radio Telescope observations at 610 MHz and 1.4 GHz to obtain a deep, low-frequency radio image of the region surrounding HESS J1858+020. We analysed archival radio, infrared, and X-ray data as well. This observational information, combined with molecular data, catalogue sources, and a nearby Fermi gamma-ray detection of unidentified origin, are combined to explore possible counterparts to the very high energy source. Results. We provide with a deep radio image of a supernova remnant that might be related to the GeV and TeV emission in the region. We confirm the presence of an H ii region next to the supernova remnant and coincident with molecular emission. A potential region of star formation is also identified. We identify several radio and X-ray sources in the surroundings. Some of these sources are known planetary nebulae, whereas others may be non-thermal extended emitters and embedded young stellar objects. Three old, background Galactic pulsars also neighbour HESS J1858+020 along the line of sight. Conclusions. The region surrounding HESS J1858+020 is rich in molecular structures and non-thermal objects that may potentially be linked to this unidentified very high energy source. In particular, a supernova remnant interacting with nearby molecular clouds may be a good candidate, but a star forming region, or a non-thermal radio source of yet unclear nature, may also be behind the gamma-ray source. The neighbouring pulsars, despite being old and distant, cannot be discarded as candidates. Further observational studies are needed, however, to narrow the search for a counterpart to the HESS source.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Context.Massive stars form in dense and massive molecular cores. The exact formation mechanism is unclear, but it is possible that some massive stars are formed by processes similar to those that produce the low-mass stars, with accretion/ejection phenomena occurring at some point of the evolution of the protostar. This picture seems to be supported by the detection of a collimated stellar wind emanating from the massive protostar IRAS 16547-4247. A triple radio source is associated with the protostar: a compact core and two radio lobes. The emission of the southern lobe is clearly non-thermal. Such emission is interpreted as synchrotron radiation produced by relativistic electrons locally accelerated at the termination point of a thermal jet. Since the ambient medium is determined by the properties of the molecular cloud in which the whole system is embedded, we can expect high densities of particles and infrared photons. Because of the confirmed presence of relativistic electrons, inverse Compton and relativistic Bremsstrahlung interactions are unavoidable. Aims.We aim to make quantitative predictions of the spectral energy distribution of the non-thermal spots generated by massive young stellar objects, with emphasis on the particular case of IRAS 16547-4247. Methods.We study the high-energy emission generated by the relativistic electrons which produce the non-thermal radio source in IRAS 16547-4247. We also study the result of proton acceleration at the terminal shock of the thermal jet and make estimates of the secondary gamma rays and electron-positron pairs produced by pion decay. Results.We present spectral energy distributions for the southern lobe of IRAS 16547-4247, for a variety of conditions. We show that high-energy emission might be detectable from this object in the gamma-ray domain. The source may also be detectable in X-rays through long exposures with current X-ray instruments. Conclusions.Gamma-ray telescopes such as GLAST, and even ground-based Cherenkov arrays of new generation can be used to study non-thermal processes occurring during the formation of massive stars.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to shed light on the main physical processes controlling fragmentation of massive dense cores, we present a uniform study of the density structure of 19 massive dense cores, selected to be at similar evolutionary stages, for which their relative fragmentation level was assessed in a previous work. We inferred the density structure of the 19 cores through a simultaneous fit of the radial intensity profiles at 450 and 850 μm (or 1.2 mm in two cases) and the spectral energy distribution, assuming spherical symmetry and that the density and temperature of the cores decrease with radius following power-laws. Even though the estimated fragmentation level is strictly speaking a lower limit, its relative value is significant and several trends could be explored with our data. We find a weak (inverse) trend of fragmentation level and density power-law index, with steeper density profiles tending to show lower fragmentation, and vice versa. In addition, we find a trend of fragmentation increasing with density within a given radius, which arises from a combination of flat density profile and high central density and is consistent with Jeans fragmentation. We considered the effects of rotational-to-gravitational energy ratio, non-thermal velocity dispersion, and turbulence mode on the density structure of the cores, and found that compressive turbulence seems to yield higher central densities. Finally, a possible explanation for the origin of cores with concentrated density profiles, which are the cores showing no fragmentation, could be related with a strong magnetic field, consistent with the outcome of radiation magnetohydrodynamic simulations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

RX J1826.2-1450/LS 5039 has been recently proposed to be a radio emitting high mass X-ray binary. In this paper, we present an analysis of its X-ray timing and spectroscopic properties using different instruments on board the RXTE satellite. The timing analysis indicates the absence of pulsed or periodic emission on time scales of 0.02-2000 s and 2-200 d, respectively. The source spectrum is well represented by a power-law model, plus a Gaussian component describing a strong iron line at 6.6 keV. Significant emission is seen up to 30 keV, and no exponential cut-off at high energy is required. We also study the radio properties of the system according to the GBI-NASA Monitoring Program. RX J1826.2-1450/LS 5039 continues to display moderate radio variability with a clearly non-thermal spectral index. No strong radio outbursts have been detected after several months.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two of the drawbacks of using natural-based composites in industrial applications are thermal instability and water uptake capacity. In this work, mechanical wood pulp was used to reinforce polypropylene at a level of 20 to 50 wt. %. Composites were mixed by means of a Brabender internal mixer for both non-coupled and coupled formulations. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to determine the thermal properties of the composites. The water uptake behavior was evaluated by immersion of the composites in water until an equilibrium state was reached. Results of water absorption tests revealed that the amount of water absorption was clearly dependent upon the fiber content. The coupled composites showed lower water absorption compared to the uncoupled composites. The incorporation of mechanical wood pulp into the polypropylene matrix produced a clear nucleating effect by increasing the crystallinity degree of the polymer and also increasing the temperature of polymer degradation. The maximum degradation temperature for stone ground wood pulp–reinforced composites was in the range of 330 to 345 ºC

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Earthquakes occurring around the world each year cause thousands ofdeaths, millions of dollars in damage to infrastructure, and incalculablehuman suffering. In recent years, satellite technology has been asignificant boon to response efforts following an earthquake and itsafter-effects by providing mobile communications between response teamsand remote sensing of damaged areas to disaster management organizations.In 2007, an international team of students and professionals assembledduring theInternational Space University’s Summer Session Program in Beijing, Chinato examine how satellite and ground-based technology could be betterintegrated to provide an optimised response in the event of an earthquake.The resulting Technology Resources for Earthquake MOnitoring and Response(TREMOR) proposal describes an integrative prototype response system thatwill implement mobile satellite communication hubs providing telephone anddata links between response teams, onsite telemedicine consultation foremergency first-responders, and satellite navigation systems that willlocate and track emergency vehicles and guide search-and-rescue crews. Aprototype earthquake simulation system is also proposed, integratinghistorical data, earthquake precursor data, and local geomatics andinfrastructure information to predict the damage that could occur in theevent of an earthquake. The backbone of these proposals is a comprehensiveeducation and training program to help individuals, communities andgovernments prepare in advance. The TREMOR team recommends thecoordination of these efforts through a centralised, non-governmentalorganization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Earthquakes represent a major hazard for populations around the world, causing frequent loss of life,human suffering and enormous damage to homes, other buildings and infrastructure. The Technology Resources forEarthquake Monitoring and Response (TREMOR) Team of 36 space professionals analysed this problem over thecourse of the International Space University Summer Session Program and published their recommendations in the formof a report. The TREMOR Team proposes a series of space- and ground-based systems to provide improved capabilityto manage earthquakes. The first proposed system is a prototype earthquake early-warning system that improves theexisting knowledge of earthquake precursors and addresses the potential of these phenomena. Thus, the system willat first enable the definitive assessment of whether reliable earthquake early warning is possible through precursormonitoring. Should the answer be affirmative, the system itself would then form the basis of an operational earlywarningsystem. To achieve these goals, the authors propose a multi-variable approach in which the system will combine,integrate and process precursor data from space- and ground-based seismic monitoring systems (already existing andnew proposed systems) and data from a variety of related sources (e.g. historical databases, space weather data, faultmaps). The second proposed system, the prototype earthquake simulation and response system, coordinates the maincomponents of the response phase to reduce the time delays of response operations, increase the level of precisionin the data collected, facilitate communication amongst teams, enhance rescue and aid capabilities and so forth. It isbased in part on an earthquake simulator that will provide pre-event (if early warning is proven feasible) and post-eventdamage assessment and detailed data of the affected areas to corresponding disaster management actors by means of ageographic information system (GIS) interface. This is coupled with proposed mobile satellite communication hubs toprovide links between response teams. Business- and policy-based implementation strategies for these proposals, suchas the establishment of a non-governmental organisation to develop and operate the systems, are included.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The propagation of a pulse in a nonlinear array of oscillators is influenced by the nature of the array and by its coupling to a thermal environment. For example, in some arrays a pulse can be speeded up while in others a pulse can be slowed down by raising the temperature. We begin by showing that an energy pulse (one dimension) or energy front (two dimensions) travels more rapidly and remains more localized over greater distances in an isolated array (microcanonical) of hard springs than in a harmonic array or in a soft-springed array. Increasing the pulse amplitude causes it to speed up in a hard chain, leaves the pulse speed unchanged in a harmonic system, and slows down the pulse in a soft chain. Connection of each site to a thermal environment (canonical) affects these results very differently in each type of array. In a hard chain the dissipative forces slow down the pulse while raising the temperature speeds it up. In a soft chain the opposite occurs: the dissipative forces actually speed up the pulse, while raising the temperature slows it down. In a harmonic chain neither dissipation nor temperature changes affect the pulse speed. These and other results are explained on the basis of the frequency vs energy relations in the various arrays