2 resultados para myoblasts

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In mammals, glucose transporter (GLUT)-4 plays an important role in glucose homeostasis mediating insulin action to increase glucose uptake in insulin-responsive tissues. In the basal state, GLUT4 is located in intracellular compartments and upon insulin stimulation is recruited to the plasma membrane, allowing glucose entry into the cell. Compared with mammals, fish are less efficient restoring plasma glucose after dietary or exogenous glucose administration. Recently our group cloned a GLUT4-homolog in skeletal muscle from brown trout (btGLUT4) that differs in protein motifs believed to be important for endocytosis and sorting of mammalian GLUT4. To study the traffic of btGLUT4, we generated a stable L6 muscle cell line overexpressing myc-tagged btGLUT4 (btGLUT4myc). Insulin stimulated btGLUT4myc recruitment to the cell surface, although to a lesser extent than rat-GLUT4myc, and enhanced glucose uptake. Interestingly, btGLUT4myc showed a higher steady-state level at the cell surface under basal conditions than rat-GLUT4myc due to a higher rate of recycling of btGLUT4myc and not to a slower endocytic rate, compared with rat-GLUT4myc. Furthermore, unlike rat-GLUT4myc, btGLUT4myc had a diffuse distribution throughout the cytoplasm of L6 myoblasts. In primary brown trout skeletal muscle cells, insulin also promoted the translocation of endogenous btGLUT4 to the plasma membrane and enhanced glucose transport. Moreover, btGLUT4 exhibited a diffuse intracellular localization in unstimulated trout myocytes. Our data suggest that btGLUT4 is subjected to a different intracellular traffic from rat-GLUT4 and may explain the relative glucose intolerance observed in fish.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Voltage-dependent K+ channels (Kv) are involved in the proliferation and differentiation of mammalian cells, since Kv antagonists impair cell cycle progression. Although myofibers are terminally differentiated, some myoblasts may re-enter the cell cycle and proliferate. Since Kv1.3 and Kv1.5 expression is remodeled during tumorigenesis and is involved in smooth muscle proliferation, the purpose of this study was to analyze the expression of Kv1.3 and Kv1.5 in smooth muscle neoplasms. In the present study, we examined human samples of smooth muscle tumors together with healthy speci­mens. Thus, leiomyoma (LM) and leiomyosarcoma (LMS) tumors were analyzed. Results showed that Kv1.3 was poorly expressed in the healthy muscle and indolent LM specimens, whereas aggressive LMS showed high levels of Kv1.3 expression. Kv1.5 staining was correlated with malignancy. The findings show a remodeling of Kv1.3 and Kv1.5 in human smooth muscle sarcoma. A correlation of Kv1.3 and Kv1.5 expression with tumor aggressiveness was observed. Thus, our results indicate Kv1.5 and Kv1.3 as potential tumorigenic targets for aggressive human LMS.