5 resultados para multi-constrained optimization

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many engineering problems that can be formulatedas constrained optimization problems result in solutionsgiven by a waterfilling structure; the classical example is thecapacity-achieving solution for a frequency-selective channel.For simple waterfilling solutions with a single waterlevel and asingle constraint (typically, a power constraint), some algorithmshave been proposed in the literature to compute the solutionsnumerically. However, some other optimization problems result insignificantly more complicated waterfilling solutions that includemultiple waterlevels and multiple constraints. For such cases, itmay still be possible to obtain practical algorithms to evaluate thesolutions numerically but only after a painstaking inspection ofthe specific waterfilling structure. In addition, a unified view ofthe different types of waterfilling solutions and the correspondingpractical algorithms is missing.The purpose of this paper is twofold. On the one hand, itoverviews the waterfilling results existing in the literature from aunified viewpoint. On the other hand, it bridges the gap betweena wide family of waterfilling solutions and their efficient implementationin practice; to be more precise, it provides a practicalalgorithm to evaluate numerically a general waterfilling solution,which includes the currently existing waterfilling solutions andothers that may possibly appear in future problems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We address the problem of scheduling a multi-station multiclassqueueing network (MQNET) with server changeover times to minimizesteady-state mean job holding costs. We present new lower boundson the best achievable cost that emerge as the values ofmathematical programming problems (linear, semidefinite, andconvex) over relaxed formulations of the system's achievableperformance region. The constraints on achievable performancedefining these formulations are obtained by formulatingsystem's equilibrium relations. Our contributions include: (1) aflow conservation interpretation and closed formulae for theconstraints previously derived by the potential function method;(2) new work decomposition laws for MQNETs; (3) new constraints(linear, convex, and semidefinite) on the performance region offirst and second moments of queue lengths for MQNETs; (4) a fastbound for a MQNET with N customer classes computed in N steps; (5)two heuristic scheduling policies: a priority-index policy, anda policy extracted from the solution of a linear programmingrelaxation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We characterize the capacity-achieving input covariance for multi-antenna channels known instantaneously at the receiver and in distribution at the transmitter. Our characterization, valid for arbitrary numbers of antennas, encompasses both the eigenvectors and the eigenvalues. The eigenvectors are found for zero-mean channels with arbitrary fading profiles and a wide range of correlation and keyhole structures. For the eigenvalues, in turn, we present necessary and sufficient conditions as well as an iterative algorithm that exhibits remarkable properties: universal applicability, robustness and rapid convergence. In addition, we identify channel structures for which an isotropic input achieves capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problems arising in commercial distribution are complex and involve several players and decision levels. One important decision is relatedwith the design of the routes to distribute the products, in an efficient and inexpensive way.This article deals with a complex vehicle routing problem that can beseen as a new extension of the basic vehicle routing problem. The proposed model is a multi-objective combinatorial optimization problemthat considers three objectives and multiple periods, which models in a closer way the real distribution problems. The first objective is costminimization, the second is balancing work levels and the third is amarketing objective. An application of the model on a small example, with5 clients and 3 days, is presented. The results of the model show the complexity of solving multi-objective combinatorial optimization problems and the contradiction between the several distribution management objective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA) representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study that optimizes the ethanol production in the fermentation of Saccharomyces cerevisiae.